parent
f20617be46
commit
bea41444d7
@ -0,0 +1,23 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/sequence_reshape_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
sequence_reshape,
|
||||
ops::SequenceReshapeKernel<paddle::platform::CUDADeviceContext, float>);
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
sequence_reshape_grad,
|
||||
ops::SequenceReshapeGradKernel<paddle::platform::CUDADeviceContext, float>);
|
@ -0,0 +1,76 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
#Licensed under the Apache License, Version 2.0 (the "License");
|
||||
#you may not use this file except in compliance with the License.
|
||||
#You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
#Unless required by applicable law or agreed to in writing, software
|
||||
#distributed under the License is distributed on an "AS IS" BASIS,
|
||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
#See the License for the specific language governing permissions and
|
||||
#limitations under the License.
|
||||
import unittest
|
||||
import numpy as np
|
||||
import math
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestSequenceReshape(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = 'sequence_reshape'
|
||||
dimension = 12
|
||||
x_lod = [[0, 4, 5, 8, 11]]
|
||||
x = np.random.uniform(0.1, 1, [11, 24]).astype('float32')
|
||||
|
||||
self.inputs = {'X': (x, x_lod)}
|
||||
self.attrs = {'new_dim': dimension}
|
||||
|
||||
out, out_lod = self.compute_output(x, x_lod, dimension)
|
||||
|
||||
self.outputs = {'Out': (out, out_lod)}
|
||||
|
||||
def compute_output(self, x, x_lod, dimension):
|
||||
x_width = x.shape[1]
|
||||
out_lod = [[0]]
|
||||
for i in xrange(len(x_lod[0]) - 1):
|
||||
seq_len = x_lod[0][i + 1] - x_lod[0][i]
|
||||
offset = (seq_len * x_width) / dimension
|
||||
assert int(offset) * dimension == seq_len * x_width
|
||||
out_lod[0].append(out_lod[0][-1] + int(offset))
|
||||
out = np.zeros(shape=(out_lod[0][-1], dimension)).astype('float32')
|
||||
for i in xrange(len(x_lod[0]) - 1):
|
||||
x_offset = x_lod[0][i] * x_width
|
||||
out_offset = out_lod[0][i] * dimension
|
||||
out_count = (out_lod[0][i + 1] - out_lod[0][i]) * dimension
|
||||
x_count = (x_lod[0][i + 1] - x_lod[0][i]) * x_width
|
||||
count = min(out_count, x_count)
|
||||
out.ravel()[out_offset:out_offset + count] = x.ravel()[
|
||||
x_offset:x_offset + count]
|
||||
return out, out_lod
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
|
||||
class TestSequenceReshape_reduce(TestSequenceReshape):
|
||||
def setUp(self):
|
||||
self.op_type = 'sequence_reshape'
|
||||
dimension = 24
|
||||
x_lod = [[0, 4, 6, 8, 12]]
|
||||
x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')
|
||||
|
||||
self.inputs = {'X': (x, x_lod)}
|
||||
self.attrs = {'new_dim': dimension}
|
||||
|
||||
out, out_lod = self.compute_output(x, x_lod, dimension)
|
||||
|
||||
self.outputs = {'Out': (out, out_lod)}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue