|
|
|
@ -7,14 +7,14 @@
|
|
|
|
|
|
|
|
|
|
Eigen Tensor模块对element-wise计算提供了强大的支持,并且书写一份代码,可以同时在CPU、GPU执行。但Eigen Tensor是一个正在开发中的模块,因此可能测试不够完备,文档较少。
|
|
|
|
|
|
|
|
|
|
关于Eigen Tensor模块的详细介绍请参考[文档](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md)
|
|
|
|
|
关于Eigen Tensor模块的详细介绍请参考[文档1](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md) 和[文档2](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### paddle::framework::Tensor
|
|
|
|
|
|
|
|
|
|
Paddle Tensor定义在framework目录下,其主要接口如下:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
```cpp
|
|
|
|
|
class Tensor {
|
|
|
|
|
public:
|
|
|
|
|
/*! Return a pointer to mutable memory block. */
|
|
|
|
@ -54,9 +54,9 @@ class Tensor {
|
|
|
|
|
};
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
`Placeholder`的作用的延迟分配内存,即我们可以先定义一个Tensor,然后使用Resize接口设置Tensor的大小,最后再调用mutable_data接口分配实际的内存。
|
|
|
|
|
`Placeholder`的作用是延迟分配内存,即我们可以先定义一个Tensor,然后使用Resize接口设置Tensor的大小,最后再调用mutable_data接口分配实际的内存。
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
```cpp
|
|
|
|
|
paddle::framework::Tensor t;
|
|
|
|
|
paddle::platform::CPUPlace place;
|
|
|
|
|
// set size first
|
|
|
|
@ -65,13 +65,14 @@ t.Resize({2, 3});
|
|
|
|
|
t.mutable_data(place);
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
### paddle::framework::Tensor使用样例
|
|
|
|
|
下面以AddOp为例说明Tensor的使用过程:
|
|
|
|
|
|
|
|
|
|
- InferShape
|
|
|
|
|
|
|
|
|
|
在运行神经网络计算图时,我们先调用每个`Operator`的`InferShape`接口,根据输入Tensor的大小来设置输出Tensor的大小,`Resize`接口会被调用。
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
```cpp
|
|
|
|
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
|
|
|
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
|
|
|
|
|
ctx.Input<Tensor>("Y")->dims(),
|
|
|
|
@ -85,7 +86,7 @@ void InferShape(const framework::InferShapeContext &ctx) const override {
|
|
|
|
|
|
|
|
|
|
`Operator`的`Run`接口最终会调用对应`OpKernel`的`Compute`接口,在这时真正的分配内存,`mutable_data`接口会被调用。
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
```cpp
|
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
auto* input0 = context.Input<Tensor>("X");
|
|
|
|
|
auto* input1 = context.Input<Tensor>("Y");
|
|
|
|
@ -93,13 +94,13 @@ void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
|
|
|
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto X = EigenVector<T>::Flatten(*input0);
|
|
|
|
|
auto Y = EigenVector<T>::Flatten(*input1);
|
|
|
|
|
auto Z = EigenVector<T>::Flatten(*output);
|
|
|
|
|
auto x = EigenVector<T>::Flatten(*input0);
|
|
|
|
|
auto y = EigenVector<T>::Flatten(*input1);
|
|
|
|
|
auto z = EigenVector<T>::Flatten(*output);
|
|
|
|
|
|
|
|
|
|
auto place = context.GetEigenDevice<Place>();
|
|
|
|
|
|
|
|
|
|
Z.device(place) = X + Y;
|
|
|
|
|
z.device(place) = x + y;
|
|
|
|
|
}
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
@ -110,7 +111,7 @@ void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
|
|
|
|
|
以EigenTensor为例,做一个介绍
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
```cpp
|
|
|
|
|
Tensor t;
|
|
|
|
|
float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace());
|
|
|
|
|
for (int i = 0; i < 1 * 2 * 3; i++) {
|
|
|
|
@ -122,7 +123,7 @@ EigenTensor<float, 3>::Type et = EigenTensor<float, 3>::From(t);
|
|
|
|
|
|
|
|
|
|
From是EigenTensor模板提供的一个接口,可以实现从paddle::framework::Tensor到对EigenTensor的转换。由于Tensor的rank是模板参数,因此在转换时需要显示的指定。
|
|
|
|
|
|
|
|
|
|
需要额外注意的是,EigenVector<T>::From方法是把paddle中的一维Tensor转为Eigen的一维Tensor,在这里用EigenVector来表示;而EigenVector<T>::Flatten方法是把paddle中的一个Tensor进行reshape操作,压扁成为Eigen的一维Tensor,类型仍然为EigenVector。
|
|
|
|
|
在Eigen中,不同rank的Tensor是不同类型,Vector是rank为1的Tensor。需要额外注意的是,EigenVector<T>::From方法是把paddle中的一维Tensor转为Eigen的一维Tensor,在这里用EigenVector来表示;而EigenVector<T>::Flatten方法是把paddle中的一个Tensor进行reshape操作,压扁成为Eigen的一维Tensor,类型仍然为EigenVector。
|
|
|
|
|
|
|
|
|
|
更多的转换方法请参考eigen_test.cc中的[单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/eigen_test.cc)。
|
|
|
|
|
|
|
|
|
@ -132,12 +133,12 @@ From是EigenTensor模板提供的一个接口,可以实现从paddle::framework
|
|
|
|
|
|
|
|
|
|
当需要完成计算时,我们需要等式左边的EigenTensor调用device接口。在这里需要注意的是,这里的EigenTensor之间的运算只是改变了原有Tensor中的数据,而不会改变原有Tensor的shape信息。
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
auto X = EigenVector<T>::Flatten(*input0);
|
|
|
|
|
auto Y = EigenVector<T>::Flatten(*input1);
|
|
|
|
|
auto Z = EigenVector<T>::Flatten(*output);
|
|
|
|
|
```cpp
|
|
|
|
|
auto x = EigenVector<T>::Flatten(*input0);
|
|
|
|
|
auto y = EigenVector<T>::Flatten(*input1);
|
|
|
|
|
auto z = EigenVector<T>::Flatten(*output);
|
|
|
|
|
auto place = context.GetEigenDevice<Place>();
|
|
|
|
|
Z.device(place) = X + Y;
|
|
|
|
|
z.device(place) = x + y;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
在这段代码中,input0/input1/output可以是任意维度的Tensor。我们调用了EigenVector的Flatten接口,把任意维度的Tensor转为了一维的EigenVector。而在计算结束之后,input0/input1/output的原有shape信息不变。如果想改变原有Tensor的shape信息,可以调用Resize接口进行改变。
|
|
|
|
|