Merge branch 'develop' of github.com:PaddlePaddle/Paddle into new_api_about_cpkt

wangkuiyi-patch-1
tangwei12 7 years ago
commit bf2c53ae0a

@ -19,4 +19,4 @@ ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl && chmod +x /usr/bin/paddle_k8s
ENV LD_LIBRARY_PATH=/usr/local/lib
ADD fluid_benchmark.py dataset.py models/ /workspace/
ADD fluid_benchmark.py recordio_converter.py models/ /workspace/

@ -29,9 +29,11 @@ Currently supported `--model` argument include:
You can choose to use GPU/CPU training. With GPU training, you can specify
`--gpus <gpu_num>` to run multi GPU training.
* Run distributed training with parameter servers:
* see [run_fluid_benchmark.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/fluid/run_fluid_benchmark.sh) as an example.
* start parameter servers:
```bash
PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=1 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method pserver
sleep 15
```
* start trainers:
```bash
@ -42,6 +44,16 @@ Currently supported `--model` argument include:
PADDLE_PSERVER_PORT=7164 PADDLE_TRAINER_IPS=192.168.0.2,192.168.0.3 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model mnist --device GPU --update_method nccl2
```
## Prepare the RecordIO file to Achieve Better Performance
Run the following command will generate RecordIO files like "mnist.recordio" under the path
and batch_size you choose, you can use batch_size=1 so that later reader can change the batch_size
at any time using `fluid.batch`.
```bash
python -c 'from recordio_converter import *; prepare_mnist("data", 1)'
```
## Run Distributed Benchmark on Kubernetes Cluster
You may need to build a Docker image before submitting a cluster job onto Kubernetes, or you will

@ -38,10 +38,12 @@ def parse_args():
default='resnet',
help='The model to run benchmark with.')
parser.add_argument(
'--batch_size', type=int, default=32, help='The minibatch size.')
'--batch_size',
type=int,
default=32,
help='The batch size on each gpu.')
parser.add_argument(
'--learning_rate', type=float, default=0.001, help='The learning rate.')
# TODO(wuyi): add "--use_fake_data" option back.
parser.add_argument(
'--skip_batch_num',
type=int,
@ -49,7 +51,10 @@ def parse_args():
help='The first num of minibatch num to skip, for better performance test'
)
parser.add_argument(
'--iterations', type=int, default=80, help='The number of minibatches.')
'--iterations',
type=int,
default=80,
help='The number of minibatches, set to -1 to run all batches.')
parser.add_argument(
'--pass_num', type=int, default=100, help='The number of passes.')
parser.add_argument(
@ -69,6 +74,7 @@ def parse_args():
type=int,
default=1,
help='If gpus > 1, will use ParallelExecutor to run, else use Executor.')
# this option is available only for vgg and resnet.
parser.add_argument(
'--cpus',
type=int,
@ -78,7 +84,7 @@ def parse_args():
'--data_set',
type=str,
default='flowers',
choices=['cifar10', 'flowers'],
choices=['cifar10', 'flowers', 'imagenet'],
help='Optional dataset for benchmark.')
parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.')
@ -108,6 +114,16 @@ def parse_args():
default='local',
choices=['local', 'pserver', 'nccl2'],
help='Choose parameter update method, can be local, pserver, nccl2.')
parser.add_argument(
'--use_reader_op',
action='store_true',
help='Whether to use reader op, and must specify the data path if set this to true.'
)
parser.add_argument(
'--data_path',
type=str,
default="",
help='Directory that contains all the training recordio files.')
args = parser.parse_args()
return args
@ -210,26 +226,50 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup_prog)
feed_var_list = [
var for var in train_prog.global_block().vars.itervalues()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
if not args.use_reader_op:
feed_var_list = [
var for var in train_prog.global_block().vars.itervalues()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
iters, num_samples, start_time = 0, 0, time.time()
for pass_id in range(args.pass_num):
train_losses = []
for batch_id, data in enumerate(train_reader()):
if not args.use_reader_op:
reader_generator = train_reader()
batch_id = 0
data = None
while True:
if not args.use_reader_op:
data = next(reader_generator, None)
if data == None:
break
if iters == args.iterations:
break
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
break
loss = exe.run(train_prog,
feed=feeder.feed(data),
fetch_list=[avg_loss])
if args.use_reader_op:
try:
loss = exe.run(train_prog, fetch_list=[avg_loss])
except fluid.core.EnforceNotMet as ex:
break
else:
loss = exe.run(train_prog,
feed=feeder.feed(data),
fetch_list=[avg_loss])
iters += 1
num_samples += len(data)
batch_id += 1
# FIXME(wuyi): For use_reader_op, if the current
# pass is not the last, the last batch of this pass
# is also equal to args.batch_size.
if args.use_reader_op:
num_samples += args.batch_size * args.gpus
else:
num_samples += len(data)
train_losses.append(loss)
print("Pass: %d, Iter: %d, Loss: %f\n" %
(pass_id, iters, np.mean(train_losses)))
@ -250,10 +290,14 @@ def train(avg_loss, infer_prog, optimizer, train_reader, test_reader, batch_acc,
def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
batch_acc, args, train_prog, startup_prog, nccl_id_var,
num_trainers, trainer_id):
feed_var_list = [
var for var in train_prog.global_block().vars.itervalues()
if var.is_data
]
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
if not args.use_reader_op:
feed_var_list = [
var for var in train_prog.global_block().vars.itervalues()
if var.is_data
]
feeder = fluid.DataFeeder(feed_var_list, place)
# generate fake:
if args.use_fake_data:
for var in feed_var_list:
@ -270,7 +314,6 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
"value": 1.0,
"dtype": var.dtype})
place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(0)
if nccl_id_var and trainer_id == 0:
#FIXME(wuyi): wait other trainer to start listening
time.sleep(30)
@ -287,12 +330,21 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
num_trainers=num_trainers,
trainer_id=trainer_id)
feeder = fluid.DataFeeder(feed_var_list, place)
for pass_id in range(args.pass_num):
num_samples = 0
iters = 0
start_time = time.time()
for batch_id, data in enumerate(train_reader()):
if not args.use_reader_op:
reader_generator = train_reader()
batch_id = 0
data = None
while True:
if not args.use_reader_op:
data = next(reader_generator, None)
if data == None:
break
if iters == args.iterations:
break
if args.profile and pass_id == 0 and batch_id == 5:
profiler.start_profiler("All")
elif args.profile and pass_id == 0 and batch_id == 10:
@ -301,19 +353,25 @@ def train_parallel(avg_loss, infer_prog, optimizer, train_reader, test_reader,
if iters == args.skip_batch_num:
start_time = time.time()
num_samples = 0
if iters == args.iterations:
break
if args.use_fake_data:
loss, = exe.run([avg_loss.name])
if args.use_fake_data or args.use_reader_op:
try:
loss, = exe.run([avg_loss.name])
except fluid.core.EnforceNotMet as ex:
break
else:
loss, = exe.run([avg_loss.name], feed=feeder.feed(data))
if args.update_method == "pserver":
exe.bcast_params()
num_samples += len(data)
if args.use_reader_op:
num_samples += args.batch_size * args.gpus
else:
num_samples += len(data)
iters += 1
if batch_id % 1 == 0:
print("Pass %d, batch %d, loss %s" %
(pass_id, batch_id, np.array(loss)))
batch_id += 1
print_train_time(start_time, time.time(), num_samples)
if not args.no_test and batch_acc:
test_acc = test(startup_exe, infer_prog, test_reader, feeder,

@ -197,6 +197,8 @@ def lodtensor_to_ndarray(lod_tensor):
def get_model(args):
if args.use_reader_op:
raise Exception("machine_translation do not support reader op for now.")
embedding_dim = 512
encoder_size = 512
decoder_size = 512
@ -221,7 +223,7 @@ def get_model(args):
train_batch_generator = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus)
test_batch_generator = paddle.batch(
paddle.reader.shuffle(

@ -20,6 +20,7 @@ import numpy as np
import argparse
import time
import cProfile
import os
import paddle
import paddle.fluid as fluid
@ -65,9 +66,24 @@ def cnn_model(data):
def get_model(args):
# Input data
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1, 1, 28, 28], (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
images, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if args.device == 'CPU' and args.cpus > 1:
places = fluid.layers.get_places(args.cpus)
@ -103,7 +119,7 @@ def get_model(args):
# Reader
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=args.batch_size)
paddle.dataset.mnist.train(), batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch(
paddle.dataset.mnist.test(), batch_size=args.batch_size)
return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc

@ -19,6 +19,7 @@ from __future__ import print_function
import functools
import numpy as np
import time
import os
import cProfile, pstats, StringIO
@ -26,6 +27,7 @@ import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
from recordio_converter import imagenet_train, imagenet_test
def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'):
@ -122,16 +124,48 @@ def get_model(args):
else:
dshape = [32, 32, 3]
model = resnet_cifar10
else:
train_reader = paddle.dataset.cifar.train10()
test_reader = paddle.dataset.cifar.test10()
elif args.data_set == "flowers":
class_dim = 102
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
train_reader = paddle.dataset.flowers.train()
test_reader = paddle.dataset.flowers.test()
elif args.data_set == "imagenet":
class_dim = 1000
if args.data_format == 'NCHW':
dshape = [3, 224, 224]
else:
dshape = [224, 224, 3]
model = resnet_imagenet
if not args.data_path:
raise Exception(
"Must specify --data_path when training with imagenet")
train_reader = imagenet_train(args.data_path)
test_reader = imagenet_test(args.data_path)
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + dshape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
input, label = fluid.layers.read_file(data_file)
else:
input = fluid.layers.data(name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if args.device == 'CPU' and args.cpus > 1:
places = fluid.layers.get_places(args.cpus)
@ -162,15 +196,10 @@ def get_model(args):
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
train_reader = paddle.batch(
batched_train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
batch_size=args.batch_size)
return avg_cost, inference_program, optimizer, train_reader, test_reader, batch_acc
train_reader, buf_size=5120),
batch_size=args.batch_size * args.gpus)
batched_test_reader = paddle.batch(train_reader, batch_size=args.batch_size)
return avg_cost, inference_program, optimizer, batched_train_reader, batched_test_reader, batch_acc

@ -44,6 +44,9 @@ def crop_sentence(reader, crop_size):
def get_model(args):
if args.use_reader_op:
raise Exception(
"stacked_dynamic_lstm do not support reader op for now.")
lstm_size = 512
emb_dim = 512
crop_size = 1500
@ -114,7 +117,7 @@ def get_model(args):
train_reader = batch(
paddle.reader.shuffle(
crop_sentence(imdb.train(word_dict), crop_size), buf_size=25000),
batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus)
test_reader = batch(
paddle.reader.shuffle(
crop_sentence(imdb.test(word_dict), crop_size), buf_size=25000),

@ -22,6 +22,7 @@ import paddle.fluid as fluid
import paddle.fluid.core as core
import argparse
import functools
import os
def vgg16_bn_drop(input):
@ -65,9 +66,24 @@ def get_model(args):
else:
data_shape = [224, 224, 3]
# Input data
images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if args.use_reader_op:
filelist = [
os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
]
data_file = fluid.layers.open_files(
filenames=filelist,
shapes=[[-1] + data_shape, (-1, 1)],
lod_levels=[0, 0],
dtypes=["float32", "int64"],
thread_num=args.gpus,
pass_num=args.pass_num)
data_file = fluid.layers.double_buffer(
fluid.layers.batch(
data_file, batch_size=args.batch_size))
images, label = fluid.layers.read_file(data_file)
else:
images = fluid.layers.data(name='data', shape=dshape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# Train program
net = vgg16_bn_drop(images)
@ -95,7 +111,7 @@ def get_model(args):
paddle.dataset.cifar.train10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.train(),
buf_size=5120),
batch_size=args.batch_size)
batch_size=args.batch_size * args.gpus)
test_reader = paddle.batch(
paddle.dataset.cifar.test10()
if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),

@ -0,0 +1,164 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.dataset import mnist, cifar, flowers, image
def convert_2_recordio(py_reader, outfilepath, batch_size, shape_data,
shape_label):
num_batches = 0
with fluid.program_guard(fluid.Program(), fluid.Program()):
reader = paddle.batch(py_reader(), batch_size=batch_size)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=shape_data),
fluid.layers.data(
name='label', shape=shape_label, dtype='int64'),
],
place=fluid.CPUPlace())
num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
outfilepath, reader, feeder)
return num_batches
def prepare_mnist(outpath, batch_size):
outfilepath = os.path.join(outpath, "mnist.recordio")
convert_2_recordio(mnist.train, outfilepath, batch_size, [784], [1])
def prepare_cifar10(outpath, batch_size):
outfilepath = os.path.join(outpath, "cifar.recordio")
convert_2_recordio(cifar.train10, outfilepath, batch_size, [3, 32, 32], [1])
def prepare_flowers(outpath, batch_size):
outfilepath = os.path.join(outpath, "flowers.recordio")
convert_2_recordio(flowers.train, outfilepath, batch_size, [3, 224, 224],
[1])
def default_mapper(sample):
img, label = sample
img = image.simple_transform(
img, 256, 224, True, mean=[103.94, 116.78, 123.68])
return img.flatten().astype('float32'), label
def imagenet_train(data_dir):
contents = os.listdir(data_dir)
if set(contents) != set(
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
raise Exception("Imagenet data contents error!")
img2label = dict()
imgfilelist = []
with open(os.path.join(data_dir, "train.txt")) as fn:
while 1:
l = fn.readline()
if not l:
break
img, lbl = l[:-1].split(" ")
img2label[img] = int(lbl)
imgfilelist.append(img)
# shuffle all, this is slow
random.shuffle(imgfilelist)
def train_reader():
for idx, imgfile in enumerate(imgfilelist):
data = image.load_image(
os.path.join(data_dir, "train", imgfile.lower()))
label = [img2label[imgfile], ]
yield [data, label]
return paddle.reader.map_readers(default_mapper, train_reader)
def imagenet_test(data_dir):
contents = os.listdir(data_dir)
if set(contents) != set(
["train", "train.txt", "val", "val_set", "val.txt", "unzip.sh"]):
raise Exception("Imagenet data contents error!")
img2label = dict()
imgfilelist = []
with open(os.path.join(data_dir, "val.txt")) as fn:
while 1:
l = fn.readline()
if not l:
break
img, lbl = l[:-1].split(" ")
img2label[img] = int(lbl)
imgfilelist.append(img)
def test_reader():
for idx, imgfile in enumerate(imgfilelist):
base_path = os.path.join(data_dir, "val", imgfile.split(".")[0])
image_path = ".".join([base_path, "jpeg"])
data = image.load_image(image_path)
label = [img2label[imgfile], ]
yield [data, label]
return paddle.reader.map_readers(default_mapper, test_reader)
# FIXME(wuyi): delete this when https://github.com/PaddlePaddle/Paddle/pull/11066 is merged
def convert_reader_to_recordio_files(
filename,
batch_per_file,
reader_creator,
feeder,
compressor=core.RecordIOWriter.Compressor.Snappy,
max_num_records=1000,
feed_order=None):
if feed_order is None:
feed_order = feeder.feed_names
f_name, f_ext = os.path.splitext(filename)
assert (f_ext == ".recordio")
lines = []
f_idx = 0
counter = 0
for idx, batch in enumerate(reader_creator()):
lines.append(batch)
if idx >= batch_per_file and idx % batch_per_file == 0:
filename = "%s-%05d%s" % (f_name, f_idx, f_ext)
with fluid.recordio_writer.create_recordio_writer(
filename, compressor, max_num_records) as writer:
for l in lines:
res = feeder.feed(l)
for each in feed_order:
writer.append_tensor(res[each])
writer.complete_append_tensor()
counter += 1
lines = []
f_idx += 1
print("written file: ", filename)
return counter
def prepare_imagenet(inpath, outpath, batch_size):
r = paddle.batch(imagenet_train(inpath), batch_size=batch_size)
feeder = fluid.DataFeeder(
feed_list=[
fluid.layers.data(
name="image", shape=[3, 224, 224]), fluid.layers.data(
name="label", shape=[1], dtype='int64')
],
place=fluid.CPUPlace())
outpath = os.path.join(outpath, "imagenet.recordio")
convert_reader_to_recordio_files(outpath, 10000, r, feeder)

@ -0,0 +1,9 @@
#!/bin/bash
PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model resnet --device CPU --update_method pserver --iterations=10000 &
sleep 15
CUDA_VISIBLE_DEVICES=0,1 PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=0 python fluid_benchmark.py --model resnet --device GPU --update_method pserver --iterations=10000 --gpus 2 &
CUDA_VISIBLE_DEVICES=2,3 PADDLE_TRAINING_ROLE=TRAINER PADDLE_PSERVER_PORT=7164 PADDLE_PSERVER_IPS=127.0.0.1 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=127.0.0.1 PADDLE_TRAINER_ID=1 python fluid_benchmark.py --model resnet --device GPU --update_method pserver --iterations=10000 --gpus 2 &

@ -92,6 +92,9 @@ if(WITH_GPU)
if(${CUDNN_MAJOR_VERSION} VERSION_LESS 7)
message(FATAL_ERROR "TensorRT needs CUDNN >= 7.0 to compile")
endif()
if(${TENSORRT_MAJOR_VERSION} VERSION_LESS 4)
message(FATAL_ERROR "Paddle needs TensorRT >= 4.0 to compile")
endif()
include_directories(${TENSORRT_INCLUDE_DIR})
endif()
elseif(WITH_AMD_GPU)

@ -106,7 +106,7 @@ PaddlePaddle需要使用Docker环境完成编译这样可以免去单独安
- 学习 Docker 有多难?
理解 Docker 并不难,大概花十分钟看一下 `这篇文章 <https://zhuanlan.zhihu.com/p/19902938>`_ 。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。
理解 Docker 并不难,大概花十分钟看一下 `如何使用Docker <https://zhuanlan.zhihu.com/p/19902938>`_ 。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。
- 我可以用 IDE 吗?
@ -123,7 +123,7 @@ PaddlePaddle需要使用Docker环境完成编译这样可以免去单独安
- 可以并行编译吗?
是的。我们的 Docker image 运行一个 `Bash脚本 <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh>`_ 。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。
是的。我们的 Docker image 运行一个 `Paddle编译Bash脚本 <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh>`_ 。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。
- Docker 需要 sudo
@ -131,11 +131,11 @@ PaddlePaddle需要使用Docker环境完成编译这样可以免去单独安
- 在 Windows/MacOS 上编译很慢
Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考 `这个issue <https://github.com/PaddlePaddle/Paddle/issues/627>`_
Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考 `如何为Windows/Mac计算机上的Docker增加内存和虚拟机 <https://github.com/PaddlePaddle/Paddle/issues/627>`_
- 磁盘不够
本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images也会占用磁盘。可以参考 `这篇文章 <https://zaiste.net/posts/removing_docker_containers/>`_ 来清理这些内容。
本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images也会占用磁盘。可以参考 `如何删除Docker Container <https://zaiste.net/posts/removing_docker_containers/>`_ 来清理这些内容。
.. _compile_deps:
@ -195,7 +195,7 @@ BLAS
PaddlePaddle支持 `MKL <https://software.intel.com/en-us/intel-mkl>`_
`OpenBlAS <http://www.openblas.net/>`_ 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集
还会下载MKL-DNN数学库详细参考 `这里 <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_
还会下载MKL-DNN数学库详细参考 `mkldnn设计文档 <https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn#cmake>`_
如果关闭MKL则会使用OpenBLAS作为BLAS库。

@ -24,31 +24,37 @@ set(ANAKIN_LIBRARY "" CACHE STRING "path of Anakin library")
set(inference_deps paddle_inference_api paddle_fluid_api)
# if anakin is set enable anakin api implementation
if(ANAKIN_INCLUDE_DIR AND ANAKIN_LIBRARY)
if(ANAKIN_INCLUDE AND ANAKIN_LIBRARY)
set(ANAKIN_FOUND ON)
else()
set(ANAKIN_FOUND OFF)
endif()
function(fetch_include_recursively root_dir)
if (IS_DIRECTORY ${root_dir})
include_directories(${root_dir})
endif()
file(GLOB ALL_SUB RELATIVE ${root_dir} ${root_dir}/*)
foreach(sub ${ALL_SUB})
if (IS_DIRECTORY ${root_dir}/${sub})
fetch_include_recursively(${root_dir}/${sub})
endif()
endforeach()
endfunction()
if (ANAKIN_FOUND)
# Anakin's code style doesn't follow google c style.
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=comment
-Wno-error=reorder
-Wno-error=format
-Wno-error=switch
-Wno-error=return-type
-Wno-error=non-virtual-dtor
-Wno-error=cpp")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-error=unused-variable -Wno-error=format-extra-args -Wno-error=comment -Wno-error=format -Wno-error=switch -Wno-error=return-type -Wno-error=non-virtual-dtor -Wno-reorder -Wno-error=cpp")
message(STATUS "Anakin for inference is enabled")
message(STATUS "Anakin is set INCLUDE:${ANAKIN_INCLUDE} LIBRARY:${ANAKIN_LIBRARY}")
include_directories("${ANAKIN_INCLUDE}")
# Anakin's source path is a mass, need to set sub-directories trivially.
include_directories("${ANAKIN_INCLUDE}/saber")
link_directories("${ANAKIN_LIBRARY}")
fetch_include_recursively(${ANAKIN_INCLUDE})
link_directories(${ANAKIN_LIBRARY})
nv_library(inference_anakin_api SRCS paddle_inference_api_anakin_engine.cc)
target_link_libraries(inference_anakin_api anakin)
nv_library(inference_anakin_api SHARED SRCS paddle_inference_api.cc paddle_inference_api_anakin_engine.cc)
target_link_libraries(inference_anakin_api anakin anakin_saber_common)
list(APPEND inference_deps inference_anakin_api)
endif()
@ -73,7 +79,7 @@ function(inference_api_test TARGET_NAME)
endfunction(inference_api_test)
cc_library(paddle_inference_api
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc
SRCS paddle_inference_api.cc paddle_inference_api_impl.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
cc_test(test_paddle_inference_api
@ -84,8 +90,8 @@ inference_api_test(test_paddle_inference_api_impl
ARGS test_word2vec test_image_classification)
if (ANAKIN_FOUND)
nv_test(inference_anakin_test SRCS paddle_inference_api_anakin_engine_tester.cc
DEPS ${inference_deps} protobuf)
cc_test(inference_anakin_test SRCS paddle_inference_api_anakin_engine_tester.cc
DEPS ${inference_deps})
endif()
if(WITH_TESTING)

@ -19,8 +19,8 @@ limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <memory>
#include <thread>
#include "paddle/contrib/inference/paddle_inference_api.h"
namespace paddle {
namespace demo {
@ -61,13 +61,67 @@ void Main(bool use_gpu) {
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data)[i];
}
// TODO(Superjomn): this is should be free automatically
free(outputs[0].data.data);
}
}
void MainThreads(int num_threads, bool use_gpu) {
// Multi-threads only support on CPU
// 0. Create PaddlePredictor with a config.
NativeConfig config;
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
config.use_gpu = use_gpu;
config.fraction_of_gpu_memory = 0.15;
config.device = 0;
auto main_predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
std::vector<std::thread> threads;
for (int tid = 0; tid < num_threads; ++tid) {
threads.emplace_back([&, tid]() {
// 1. clone a predictor which shares the same parameters
auto predictor = main_predictor->Clone();
constexpr int num_batches = 3;
for (int batch_id = 0; batch_id < num_batches; ++batch_id) {
// 2. Dummy Input Data
int64_t data[4] = {1, 2, 3, 4};
PaddleBuf buf{.data = data, .length = sizeof(data)};
PaddleTensor tensor{.name = "",
.shape = std::vector<int>({4, 1}),
.data = buf,
.dtype = PaddleDType::INT64};
std::vector<PaddleTensor> inputs(4, tensor);
std::vector<PaddleTensor> outputs;
// 3. Run
CHECK(predictor->Run(inputs, &outputs));
// 4. Get output.
ASSERT_EQ(outputs.size(), 1UL);
LOG(INFO) << "TID: " << tid << ", "
<< "output buffer size: " << outputs.front().data.length;
const size_t num_elements = outputs.front().data.length / sizeof(float);
// The outputs' buffers are in CPU memory.
for (size_t i = 0; i < std::min(5UL, num_elements); i++) {
LOG(INFO) << static_cast<float*>(outputs.front().data.data)[i];
}
free(outputs[0].data.data);
}
});
}
for (int i = 0; i < num_threads; ++i) {
threads[i].join();
}
}
TEST(demo, word2vec_cpu) { Main(false /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_cpu_1) { MainThreads(1, false /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_cpu_4) { MainThreads(4, false /*use_gpu*/); }
#ifdef PADDLE_WITH_CUDA
TEST(demo, word2vec_gpu) { Main(true /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_gpu_1) { MainThreads(1, true /*use_gpu*/); }
TEST(demo_multi_threads, word2vec_gpu_4) { MainThreads(4, true /*use_gpu*/); }
#endif
} // namespace demo

@ -113,5 +113,4 @@ struct AnakinConfig : public PaddlePredictor::Config {
// Similarly, each engine kind should map to a unique predictor implementation.
template <typename ConfigT, PaddleEngineKind engine = PaddleEngineKind::kNative>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT& config);
} // namespace paddle

@ -24,8 +24,16 @@ PaddleInferenceAnakinPredictor::PaddleInferenceAnakinPredictor(
}
bool PaddleInferenceAnakinPredictor::Init(const AnakinConfig &config) {
// TODO(Superjomn) Tell anakin to support return code.
engine_.Build(config.model_file, config.max_batch_size);
if (!(graph_.load(config.model_file))) {
return false;
}
graph_.ResetBatchSize("input_0", config.max_batch_size);
// optimization for graph
if (!(graph_.Optimize())) {
return false;
}
// construct executer
executor_.init(graph_);
return true;
}
@ -38,24 +46,30 @@ bool PaddleInferenceAnakinPredictor::Run(
<< "'s type is not float";
return false;
}
engine_.SetInputFromCPU(
input.name, static_cast<float *>(input.data.data), input.data.length);
auto d_tensor_in_p = executor_.get_in(input.name);
float *d_data_p = d_tensor_in_p->mutable_data();
if (cudaMemcpy(d_data_p,
static_cast<float *>(input.data.data),
d_tensor_in_p->valid_size() * sizeof(float),
cudaMemcpyHostToDevice) != 0) {
LOG(ERROR) << "copy data from CPU to GPU error";
return false;
}
}
// TODO(Superjomn) Tell anakin to support return code.
engine_.Execute();
executor_.prediction();
if (output_data->empty()) {
LOG(ERROR) << "At least one output should be set with tensors' names.";
return false;
}
for (auto &output : *output_data) {
auto *tensor = engine_.GetOutputInGPU(output.name);
auto *tensor = executor_.get_out(output.name);
output.shape = tensor->shape();
// Copy data from GPU -> CPU
if (cudaMemcpy(output.data.data,
tensor->data(),
tensor->size(),
tensor->mutable_data(),
tensor->valid_size() * sizeof(float),
cudaMemcpyDeviceToHost) != 0) {
LOG(ERROR) << "copy data from GPU to CPU error";
return false;
@ -64,9 +78,26 @@ bool PaddleInferenceAnakinPredictor::Run(
return true;
}
// TODO(Superjomn) To implement latter.
anakin::Net<anakin::NV, anakin::saber::AK_FLOAT, anakin::Precision::FP32>
&PaddleInferenceAnakinPredictor::get_executer() {
return executor_;
}
// the cloned new Predictor of anakin share the same net weights from original
// Predictor
std::unique_ptr<PaddlePredictor> PaddleInferenceAnakinPredictor::Clone() {
return nullptr;
VLOG(3) << "Anakin Predictor::clone";
std::unique_ptr<PaddlePredictor> cls(new PaddleInferenceAnakinPredictor());
// construct executer from other graph
auto anakin_predictor_p =
dynamic_cast<PaddleInferenceAnakinPredictor *>(cls.get());
if (!anakin_predictor_p) {
LOG(ERROR) << "fail to call Init";
return nullptr;
}
anakin_predictor_p->get_executer().init(graph_);
return std::move(cls);
}
// A factory to help create difference predictor.
@ -74,6 +105,7 @@ template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<AnakinConfig, PaddleEngineKind::kAnakin>(
const AnakinConfig &config) {
VLOG(3) << "Anakin Predictor create.";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor(config));
return x;

@ -20,32 +20,42 @@ limitations under the License. */
#pragma once
// NOTE This header file do not have namespace.
// TODO(Superjomn) Tell Anakin to provide better APIs.
#include <test/framework/net/paddle_api.h>
//#include <test/framework/net/paddle_api.h>
#include "paddle/contrib/inference/paddle_inference_api.h"
#include "framework/core/net/net.h"
#include "saber/saber_types.h"
namespace paddle {
class PaddleInferenceAnakinPredictor : public PaddlePredictor {
public:
PaddleInferenceAnakinPredictor() {}
PaddleInferenceAnakinPredictor(const AnakinConfig& config);
// NOTE Unlike the native engine, the buffers of anakin engine's output_data
// should be allocated first.
// TODO(Superjomn) should unify all the behaviors of output_data accross all
// the engines.
bool Run(const std::vector<PaddleTensor>& inputs,
std::vector<PaddleTensor>* output_data) override;
std::unique_ptr<PaddlePredictor> Clone() override;
anakin::Net<anakin::NV, anakin::saber::AK_FLOAT, anakin::Precision::FP32>&
get_executer();
~PaddleInferenceAnakinPredictor() override{};
private:
bool Init(const AnakinConfig& config);
anakin::AnakinEngine<anakin::NV,
anakin::graph::Graph<anakin::NV,
anakin::saber::AK_FLOAT,
anakin::Precision::FP32>
engine_;
graph_;
anakin::Net<anakin::NV, anakin::saber::AK_FLOAT, anakin::Precision::FP32>
executor_;
AnakinConfig config_;
};
} // namespace paddle

@ -12,16 +12,54 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/contrib/inference/paddle_inference_api.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "gflags/gflags.h"
#include "paddle/contrib/inference/paddle_inference_api.h"
namespace paddle {
TEST(inference, anakin) {
AnakinConfig GetConfig() {
AnakinConfig config;
config.model_file = "./mobilenet_v2.anakin.bin";
config.device = 0;
config.max_batch_size = 1;
return config;
}
auto engine =
TEST(inference, anakin) {
AnakinConfig config = GetConfig();
auto predictor =
CreatePaddlePredictor<AnakinConfig, PaddleEngineKind::kAnakin>(config);
float data[1 * 3 * 224 * 224] = {1.0f};
PaddleBuf buf{.data = data, .length = sizeof(data)};
PaddleTensor tensor{.name = "input_0",
.shape = std::vector<int>({1, 3, 224, 224}),
.data = buf,
.dtype = PaddleDType::FLOAT32};
// For simplicity, we set all the slots with the same data.
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
float data_out[1000];
PaddleBuf buf_out{.data = data_out, .length = sizeof(data)};
PaddleTensor tensor_out{.name = "prob_out",
.shape = std::vector<int>({1000, 1}),
.data = buf_out,
.dtype = PaddleDType::FLOAT32};
std::vector<PaddleTensor> outputs(1, tensor_out);
ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
float* data_o = static_cast<float*>(outputs[0].data.data);
for (size_t j = 0; j < 1000; ++j) {
LOG(INFO) << "output[" << j << "]: " << data_o[j];
}
}
} // namespace paddle

@ -15,6 +15,8 @@ limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <thread>
#include "gflags/gflags.h"
#include "paddle/contrib/inference/paddle_inference_api_impl.h"
#include "paddle/fluid/inference/tests/test_helper.h"
@ -45,14 +47,19 @@ NativeConfig GetConfig() {
config.model_dir = FLAGS_dirname + "word2vec.inference.model";
LOG(INFO) << "dirname " << config.model_dir;
config.fraction_of_gpu_memory = 0.15;
#ifdef PADDLE_WITH_CUDA
config.use_gpu = true;
#else
config.use_gpu = false;
#endif
config.device = 0;
return config;
}
TEST(paddle_inference_api_impl, word2vec) {
void MainWord2Vec(bool use_gpu) {
NativeConfig config = GetConfig();
auto predictor = CreatePaddlePredictor<NativeConfig>(config);
config.use_gpu = use_gpu;
framework::LoDTensor first_word, second_word, third_word, fourth_word;
framework::LoD lod{{0, 1}};
@ -100,11 +107,12 @@ TEST(paddle_inference_api_impl, word2vec) {
free(outputs[0].data.data);
}
TEST(paddle_inference_api_impl, image_classification) {
void MainImageClassification(bool use_gpu) {
int batch_size = 2;
bool use_mkldnn = false;
bool repeat = false;
NativeConfig config = GetConfig();
config.use_gpu = use_gpu;
config.model_dir =
FLAGS_dirname + "image_classification_resnet.inference.model";
@ -149,4 +157,143 @@ TEST(paddle_inference_api_impl, image_classification) {
free(data);
}
void MainThreadsWord2Vec(bool use_gpu) {
NativeConfig config = GetConfig();
config.use_gpu = use_gpu;
auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);
// prepare inputs data and reference results
constexpr int num_jobs = 3;
std::vector<std::vector<framework::LoDTensor>> jobs(num_jobs);
std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
std::vector<framework::LoDTensor> refs(num_jobs);
for (size_t i = 0; i < jobs.size(); ++i) {
// each job has 4 words
jobs[i].resize(4);
for (size_t j = 0; j < 4; ++j) {
framework::LoD lod{{0, 1}};
int64_t dict_size = 2073; // The size of dictionary
SetupLoDTensor(&jobs[i][j], lod, static_cast<int64_t>(0), dict_size - 1);
paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i][j]));
}
// get reference result of each job
std::vector<paddle::framework::LoDTensor*> ref_feeds;
std::vector<paddle::framework::LoDTensor*> ref_fetches(1, &refs[i]);
for (auto& word : jobs[i]) {
ref_feeds.push_back(&word);
}
TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
}
// create threads and each thread run 1 job
std::vector<std::thread> threads;
for (int tid = 0; tid < num_jobs; ++tid) {
threads.emplace_back([&, tid]() {
auto predictor = main_predictor->Clone();
auto& local_inputs = paddle_tensor_feeds[tid];
std::vector<PaddleTensor> local_outputs;
ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));
// check outputs range
ASSERT_EQ(local_outputs.size(), 1UL);
const size_t len = local_outputs[0].data.length;
float* data = static_cast<float*>(local_outputs[0].data.data);
for (size_t j = 0; j < len / sizeof(float); ++j) {
ASSERT_LT(data[j], 1.0);
ASSERT_GT(data[j], -1.0);
}
// check outputs correctness
float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), static_cast<int64_t>(len / sizeof(float)));
for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3);
}
free(data);
});
}
for (int i = 0; i < num_jobs; ++i) {
threads[i].join();
}
}
void MainThreadsImageClassification(bool use_gpu) {
constexpr int num_jobs = 4; // each job run 1 batch
constexpr int batch_size = 1;
NativeConfig config = GetConfig();
config.use_gpu = use_gpu;
config.model_dir =
FLAGS_dirname + "image_classification_resnet.inference.model";
auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);
std::vector<framework::LoDTensor> jobs(num_jobs);
std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
std::vector<framework::LoDTensor> refs(num_jobs);
for (size_t i = 0; i < jobs.size(); ++i) {
// prepare inputs
std::vector<std::vector<int64_t>> feed_target_shapes =
GetFeedTargetShapes(config.model_dir, /*is_combined*/ false);
feed_target_shapes[0][0] = batch_size;
framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]);
SetupTensor<float>(&jobs[i], input_dims, 0.f, 1.f);
paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i]));
// get reference result of each job
std::vector<framework::LoDTensor*> ref_feeds(1, &jobs[i]);
std::vector<framework::LoDTensor*> ref_fetches(1, &refs[i]);
TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
}
// create threads and each thread run 1 job
std::vector<std::thread> threads;
for (int tid = 0; tid < num_jobs; ++tid) {
threads.emplace_back([&, tid]() {
auto predictor = main_predictor->Clone();
auto& local_inputs = paddle_tensor_feeds[tid];
std::vector<PaddleTensor> local_outputs;
ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));
// check outputs correctness
ASSERT_EQ(local_outputs.size(), 1UL);
const size_t len = local_outputs[0].data.length;
float* data = static_cast<float*>(local_outputs[0].data.data);
float* ref_data = refs[tid].data<float>();
EXPECT_EQ(refs[tid].numel(), len / sizeof(float));
for (int i = 0; i < refs[tid].numel(); ++i) {
EXPECT_NEAR(ref_data[i], data[i], 1e-3);
}
free(data);
});
}
for (int i = 0; i < num_jobs; ++i) {
threads[i].join();
}
}
TEST(inference_api_native, word2vec_cpu) { MainWord2Vec(false /*use_gpu*/); }
TEST(inference_api_native, word2vec_cpu_threads) {
MainThreadsWord2Vec(false /*use_gpu*/);
}
TEST(inference_api_native, image_classification_cpu) {
MainThreadsImageClassification(false /*use_gpu*/);
}
TEST(inference_api_native, image_classification_cpu_threads) {
MainThreadsImageClassification(false /*use_gpu*/);
}
#ifdef PADDLE_WITH_CUDA
TEST(inference_api_native, word2vec_gpu) { MainWord2Vec(true /*use_gpu*/); }
TEST(inference_api_native, word2vec_gpu_threads) {
MainThreadsWord2Vec(true /*use_gpu*/);
}
TEST(inference_api_native, image_classification_gpu) {
MainThreadsImageClassification(true /*use_gpu*/);
}
TEST(inference_api_native, image_classification_gpu_threads) {
MainThreadsImageClassification(true /*use_gpu*/);
}
#endif
} // namespace paddle

@ -87,7 +87,7 @@ cc_library(executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto glog lod_rank_table feed_fetch_method)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS multi_devices_graph_builder threaded_ssa_graph_executor scope_buffered_ssa_graph_executor)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS graph_builder_factory threaded_ssa_graph_executor scope_buffered_ssa_graph_executor)
cc_library(prune SRCS prune.cc DEPS framework_proto)
cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context)

@ -27,6 +27,7 @@ enum class DataLayout {
kNHWC = 0,
kNCHW = 1,
kAnyLayout = 2,
kMKLDNN = 3, // all layouts supported by MKLDNN internally
};
inline DataLayout StringToDataLayout(const std::string& str) {
@ -41,6 +42,8 @@ inline DataLayout StringToDataLayout(const std::string& str) {
return DataLayout::kNCHW;
} else if (s == "ANYLAYOUT") {
return DataLayout::kAnyLayout;
} else if (s == "MKLDNNLAYOUT") {
return DataLayout::kMKLDNN;
} else {
PADDLE_THROW("Unknown storage order string: %s", s);
}
@ -54,8 +57,10 @@ inline std::string DataLayoutToString(const DataLayout& data_layout) {
return "NCHW";
case DataLayout::kAnyLayout:
return "ANY_LAYOUT";
case DataLayout::kMKLDNN:
return "MKLDNNLAYOUT";
default:
PADDLE_THROW("unknown DataLayou %d", data_layout);
PADDLE_THROW("unknown DataLayout %d", data_layout);
}
}

@ -16,6 +16,9 @@
#include <vector>
#include "paddle/fluid/operators/math/math_function.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace framework {
@ -88,5 +91,85 @@ void TransDataLayout(const OpKernelType& kernel_type_for_var,
out->set_layout(expected_kernel_type.data_layout_);
}
#ifdef PADDLE_WITH_MKLDNN
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
void* GetDataFromTensor(const Tensor& tensor, mkldnn::memory::data_type type) {
switch (type) {
case mkldnn::memory::data_type::f32:
return platform::to_void_cast(tensor.data<float>());
case mkldnn::memory::data_type::s8:
return platform::to_void_cast(tensor.data<char>());
case mkldnn::memory::data_type::u8:
return platform::to_void_cast(tensor.data<unsigned char>());
case mkldnn::memory::data_type::s16:
return platform::to_void_cast(tensor.data<int16_t>());
case mkldnn::memory::data_type::s32:
return platform::to_void_cast(tensor.data<int32_t>());
default:
PADDLE_THROW("wrong mkldnn type provided");
}
}
#endif
void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
const OpKernelType& expected_kernel_type,
const Tensor& in, Tensor* out) {
auto in_layout = kernel_type_for_var.data_layout_;
auto out_layout = expected_kernel_type.data_layout_;
PADDLE_ENFORCE(
in_layout == DataLayout::kMKLDNN && out_layout != DataLayout::kMKLDNN,
"TransDataLayoutFromMKLDNN only supports transform from MKLDNN to "
"non-MKLDNN");
#ifdef PADDLE_WITH_MKLDNN
PADDLE_ENFORCE(in.format() != memory::format::format_undef &&
in.format() != memory::format::any,
"Input tensor should have specified memory format");
// Set default as NCHW in case not specified
out_layout =
out_layout == DataLayout::kAnyLayout ? DataLayout::kNCHW : out_layout;
auto& pool = platform::DeviceContextPool::Instance();
auto* dev_ctx = dynamic_cast<platform::MKLDNNDeviceContext*>(
pool.Get(expected_kernel_type.place_));
auto& cpu_engine = dev_ctx->GetEngine();
std::vector<int> in_tz = paddle::framework::vectorize2int(in.dims());
std::vector<int> out_tz = in_tz;
memory::data_type in_type = ToMKLDNNDataType(in.type());
PADDLE_ENFORCE(in_type != memory::data_type::data_undef,
"Input tensor type is not supported: ", in.type().name());
memory::data_type out_type = in_type;
memory::format in_format =
in_tz.size() == 2 ? memory::format::nc : in.format();
memory::format out_format =
out_tz.size() == 2 ? memory::format::nc : ToMKLDNNFormat(out_layout);
void* in_data = GetDataFromTensor(in, in_type);
// output tensor has the same dims as input. Reorder don't change dims
out->Resize(in.dims());
auto out_data = out->mutable_data(expected_kernel_type.place_, in.type());
auto in_memory = memory({{{in_tz}, in_type, in_format}, cpu_engine}, in_data);
auto out_memory =
memory({{{out_tz}, out_type, out_format}, cpu_engine}, out_data);
platform::Reorder(in_memory, out_memory);
out->set_layout(out_layout);
// reset format since the out tensor will be feed to non-MKLDNN OPkernel
out->set_format(memory::format::format_undef);
#endif
}
} // namespace framework
} // namespace paddle

@ -14,6 +14,7 @@
#pragma once
#include <map>
#include <vector>
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/tensor.h"
@ -22,6 +23,50 @@
namespace paddle {
namespace framework {
#ifdef PADDLE_WITH_MKLDNN
using MKLDNNFormat = mkldnn::memory::format;
using MKLDNNDataType = mkldnn::memory::data_type;
inline MKLDNNFormat ToMKLDNNFormat(const DataLayout& layout) {
switch (layout) {
case DataLayout::kNHWC:
return MKLDNNFormat::nhwc;
case DataLayout::kNCHW:
return MKLDNNFormat::nchw;
default:
PADDLE_THROW("Fail to convert layout %s to MKLDNN format",
DataLayoutToString(layout));
}
}
inline DataLayout ToPaddleLayout(const MKLDNNFormat& format) {
switch (format) {
case MKLDNNFormat::nhwc:
return DataLayout::kNHWC;
case MKLDNNFormat::nchw:
return DataLayout::kNCHW;
default:
PADDLE_THROW("Fail to convert MKLDNN format to paddle layout");
}
}
inline MKLDNNDataType ToMKLDNNDataType(const std::type_index type) {
static const std::map<std::type_index, MKLDNNDataType> dict{
{std::type_index(typeid(float)), MKLDNNDataType::f32}, // NOLINT
{std::type_index(typeid(char)), MKLDNNDataType::s8}, // NOLINT
{std::type_index(typeid(unsigned char)), MKLDNNDataType::u8},
{std::type_index(typeid(int16_t)), MKLDNNDataType::s16},
{std::type_index(typeid(int32_t)), MKLDNNDataType::s32}};
auto iter = dict.find(type);
if (iter != dict.end()) return iter->second;
return MKLDNNDataType::data_undef;
}
#endif
void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
const OpKernelType& expected_kernel_type,
const Tensor& in, Tensor* out);
std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to);
void TransDataLayout(const OpKernelType& kernel_type_for_var,

@ -33,11 +33,34 @@ void DataTransform(const OpKernelType& expected_kernel_type,
Tensor in;
in.ShareDataWith(input_tensor);
Tensor out;
DataLayout lin = kernel_type_for_var.data_layout_;
DataLayout lout = expected_kernel_type.data_layout_;
// do layout transform
if (NeedTransformLayout(expected_kernel_type.data_layout_,
kernel_type_for_var.data_layout_)) {
TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
if (NeedTransformLayout(lout, lin)) {
if (lin == DataLayout::kMKLDNN || lout == DataLayout::kMKLDNN) {
PADDLE_ENFORCE(
!(lin == DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN),
"No layout transform needed between two MKLDNN OPKernels");
if (lin != DataLayout::kMKLDNN && lout == DataLayout::kMKLDNN) {
#ifdef PADDLE_WITH_MKLDNN
// Case1 - transform from Non-MKLDNN OPKernel to MKLDNN OPKernel
// Just set layout/format. No real transform occur
out.ShareDataWith(input_tensor);
out.set_layout(DataLayout::kMKLDNN);
out.set_format(ToMKLDNNFormat(lin));
#endif
} else {
// Case2 - transfrom from MKLDNN OPKernel to Non-MKLDNN OPKernel
// Do transform via MKLDNN lib
TransDataLayoutFromMKLDNN(kernel_type_for_var, expected_kernel_type, in,
&out);
}
} else {
// Case3 - transfrom between Non-MKLDNN OPKernels
TransDataLayout(kernel_type_for_var, expected_kernel_type, in, &out);
}
transformed = true;
PassTensorData(&out, &in);
}

@ -7,12 +7,13 @@ cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place
cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base)
cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph)
cc_library(ssa_graph_printer SRCS ssa_graph_printer.cc DEPS ssa_graph_builder)
cc_library(variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows)
if(WITH_GPU)
nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda)
dynload_cuda variable_visitor)
set(multi_devices_graph_builder_deps nccl_all_reduce_op_handle)
nv_library(reduce_op_handle SRCS reduce_op_handle.cc DEPS op_handle_base variable_visitor scope ddim dynload_cuda)
nv_library(broadcast_op_handle SRCS broadcast_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor dynload_cuda)
@ -24,10 +25,14 @@ else()
endif()
cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor)
cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope)
cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle rpc_op_handle ${multi_devices_graph_builder_deps} reduce_op_handle broadcast_op_handle)
cc_library(graph_builder_factory SRCS graph_builder_factory.cc DEPS multi_devices_graph_builder ssa_graph_printer)
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto)
cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context)

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save