|
|
|
@ -405,6 +405,31 @@ class TestL2DecayWithPiecewise(TranspilerTest):
|
|
|
|
|
["sum", "scale", "scale", "elementwise_add", "momentum"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestEmptyPserverOptimizeBlocks(TranspilerTest):
|
|
|
|
|
def net_conf(self):
|
|
|
|
|
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
|
|
|
|
|
# only one parameter
|
|
|
|
|
y_predict = fluid.layers.fc(input=x,
|
|
|
|
|
size=1000,
|
|
|
|
|
act=None,
|
|
|
|
|
param_attr=fluid.ParamAttr(name='fc_w'),
|
|
|
|
|
bias_attr=False)
|
|
|
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=1.0)
|
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
|
|
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
|
config = fluid.DistributeTranspilerConfig()
|
|
|
|
|
config.slice_var_up = False
|
|
|
|
|
|
|
|
|
|
pserver, startup = self.get_pserver(ep=self.pserver2_ep, config=config)
|
|
|
|
|
|
|
|
|
|
self.assertEqual(len(pserver.blocks), 2)
|
|
|
|
|
self.assertEqual(len(pserver.blocks[1].ops), 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestDistLookupTableBase(TranspilerTest):
|
|
|
|
|
def network_with_table(self, is_sparse, is_distributed):
|
|
|
|
|
self.table_size = 1000
|
|
|
|
|