[Paddle-TRT] trt affine channel converter (#31628)
* trt affine channel converter * add trt affine channel base test * add trt affine channel NHWC * remove asterisk for python2 compatibility * trt affine channel converter * add trt affine channel base test * add trt affine channel NHWC * remove asterisk for python2 compatibility * fix rebase * move LodTensor to Tensor * add dbg info * affine channel converter only support NCHW * scale,bias are parameters, use create_parameters api * reduce test input size to not exceed the timelimit of ci * refine affine channel unittest and add serialization/dynamic test * change super to InferencePassTest for python2 compatibility * change super to InferencePassTest for python2 compatibility * fix affine channel fp16 serialize settingdevelop
parent
b47478efc2
commit
bfb5cf5567
@ -0,0 +1,94 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/framework/data_layout.h"
|
||||
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
class Scope;
|
||||
|
||||
namespace proto {
|
||||
class OpDesc;
|
||||
} // namespace proto
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
namespace tensorrt {
|
||||
|
||||
/*
|
||||
* Affine Channel Op
|
||||
*/
|
||||
class AffineChannelOpConverter : public OpConverter {
|
||||
public:
|
||||
void operator()(const framework::proto::OpDesc& op,
|
||||
const framework::Scope& scope, bool test_mode) override {
|
||||
VLOG(3) << "convert a fluid affine_channel op to tensorrt scale nd layer";
|
||||
|
||||
framework::OpDesc op_desc(op, nullptr);
|
||||
std::string input_name = op_desc.Input("X").front();
|
||||
std::string scale_name = op_desc.Input("Scale").front();
|
||||
std::string bias_name = op_desc.Input("Bias").front();
|
||||
std::string output_name = op_desc.Output("Out").front();
|
||||
|
||||
auto input_tensor = engine_->GetITensor(input_name);
|
||||
auto idim = input_tensor->getDimensions();
|
||||
|
||||
auto* scale_v = scope.FindVar(scale_name);
|
||||
auto* scale_t = scale_v->GetMutable<framework::LoDTensor>();
|
||||
float* scale_ptr = engine_->GetWeightCPUData(scale_name, scale_t, false);
|
||||
|
||||
auto* bias_v = scope.FindVar(bias_name);
|
||||
auto* bias_t = bias_v->GetMutable<framework::LoDTensor>();
|
||||
float* bias_ptr = engine_->GetWeightCPUData(bias_name, bias_t, false);
|
||||
|
||||
auto data_layout = framework::StringToDataLayout(
|
||||
BOOST_GET_CONST(std::string, op_desc.GetAttr("data_layout")));
|
||||
|
||||
PADDLE_ENFORCE_EQ(
|
||||
data_layout, framework::DataLayout::kNCHW,
|
||||
platform::errors::InvalidArgument(
|
||||
"TensorRT affine channel converter can only convert NCHW format. "
|
||||
"Other format should be run in fluid mode. Report a bug on github "
|
||||
"issue if you see this line."));
|
||||
|
||||
// tensorrt scalend layer only support spatial dims >= 2,
|
||||
// so nhwc is not availabe (spatial dims == 0)
|
||||
const int channel_axis = engine_->with_dynamic_shape();
|
||||
|
||||
TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT,
|
||||
static_cast<void*>(scale_ptr),
|
||||
(size_t)idim.d[channel_axis]};
|
||||
TensorRTEngine::Weight bias_weights{nvinfer1::DataType::kFLOAT,
|
||||
static_cast<void*>(bias_ptr),
|
||||
(size_t)idim.d[channel_axis]};
|
||||
TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
|
||||
0};
|
||||
|
||||
auto layer = TRT_ENGINE_ADD_LAYER(engine_, ScaleNd, *input_tensor,
|
||||
nvinfer1::ScaleMode::kCHANNEL,
|
||||
bias_weights.get(), scale_weights.get(),
|
||||
power_weights.get(), channel_axis);
|
||||
|
||||
RreplenishLayerAndOutput(layer, "affine_channel", {output_name}, test_mode);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace tensorrt
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_TRT_OP_CONVERTER(affine_channel, AffineChannelOpConverter);
|
@ -0,0 +1,141 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import itertools
|
||||
import numpy as np
|
||||
from inference_pass_test import InferencePassTest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.core import PassVersionChecker
|
||||
from paddle.fluid.core import AnalysisConfig
|
||||
|
||||
|
||||
class TRTAffineChannelTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
self.bs = 2
|
||||
self.channel = 8
|
||||
self.height = 16
|
||||
self.width = 16
|
||||
self.data_layout = 'NCHW'
|
||||
self.precision = AnalysisConfig.Precision.Float32
|
||||
self.serialize = False
|
||||
self.enable_trt = True
|
||||
|
||||
def build(self):
|
||||
# set min_graph_size to 2,
|
||||
# because affine channel doesn't support nhwc format
|
||||
self.trt_parameters = InferencePassTest.TensorRTParam(
|
||||
1 << 30, self.bs, 2, self.precision, self.serialize, False)
|
||||
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
if self.data_layout == 'NCHW':
|
||||
shape = [-1, self.channel, self.height, self.width]
|
||||
else:
|
||||
shape = [-1, self.height, self.width, self.channel]
|
||||
|
||||
data = fluid.data(name='in', shape=shape, dtype='float32')
|
||||
# set scale, bias by constant
|
||||
scale = fluid.layers.create_parameter(
|
||||
shape=[self.channel],
|
||||
dtype='float32',
|
||||
default_initializer=fluid.initializer.Constant(2.))
|
||||
bias = fluid.layers.create_parameter(
|
||||
shape=[self.channel],
|
||||
dtype='float32',
|
||||
default_initializer=fluid.initializer.Constant(.5))
|
||||
affine_channel_out = fluid.layers.affine_channel(
|
||||
data, scale=scale, bias=bias, data_layout=self.data_layout)
|
||||
out = fluid.layers.batch_norm(affine_channel_out, is_test=True)
|
||||
|
||||
shape[0] = self.bs
|
||||
self.feeds = {'in': np.random.random(shape).astype('float32'), }
|
||||
self.fetch_list = [out]
|
||||
|
||||
def check_output(self):
|
||||
if core.is_compiled_with_cuda():
|
||||
use_gpu = True
|
||||
atol = 1e-5
|
||||
if self.trt_parameters.precision == AnalysisConfig.Precision.Half:
|
||||
atol = 1e-3
|
||||
self.check_output_with_option(use_gpu, atol, flatten=True)
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('tensorrt_subgraph_pass'))
|
||||
|
||||
def run_test(self):
|
||||
self.build()
|
||||
self.check_output()
|
||||
|
||||
def run_test_all(self):
|
||||
precision_opt = [
|
||||
AnalysisConfig.Precision.Float32, AnalysisConfig.Precision.Half
|
||||
]
|
||||
serialize_opt = [False, True]
|
||||
|
||||
if self.data_layout == 'NCHW':
|
||||
min_shape = [
|
||||
self.bs, self.channel, self.height // 2, self.width // 2
|
||||
]
|
||||
max_shape = [self.bs, self.channel, self.height * 2, self.width * 2]
|
||||
opt_shape = [self.bs, self.channel, self.height, self.width]
|
||||
|
||||
if self.data_layout == 'NHWC':
|
||||
min_shape = [
|
||||
self.bs, self.height // 2, self.width // 2, self.channel
|
||||
]
|
||||
max_shape = [self.bs, self.height * 2, self.width * 2, self.channel]
|
||||
opt_shape = [self.bs, self.height, self.width, self.channel]
|
||||
|
||||
dynamic_shape_profile = InferencePassTest.DynamicShapeParam({
|
||||
'in': min_shape
|
||||
}, {'in': max_shape}, {'in': opt_shape}, False)
|
||||
dynamic_shape_opt = [None, dynamic_shape_profile]
|
||||
|
||||
for precision, serialize, dynamic_shape in itertools.product(
|
||||
precision_opt, serialize_opt, dynamic_shape_opt):
|
||||
self.precision = precision
|
||||
self.serialize = serialize
|
||||
self.dynamic_shape_params = dynamic_shape
|
||||
self.run_test()
|
||||
|
||||
def test_base(self):
|
||||
self.run_test()
|
||||
|
||||
def test_fp16(self):
|
||||
self.precision = AnalysisConfig.Precision.Half
|
||||
self.run_test()
|
||||
|
||||
def test_serialize(self):
|
||||
self.serialize = True
|
||||
self.run_test()
|
||||
|
||||
def test_dynamic(self):
|
||||
self.dynamic_shape_params = InferencePassTest.DynamicShapeParam({
|
||||
'in': [self.bs, self.channel, self.height // 2, self.width // 2]
|
||||
}, {'in': [self.bs, self.channel, self.height * 2, self.width * 2]
|
||||
}, {'in': [self.bs, self.channel, self.height, self.width]}, False)
|
||||
self.run_test()
|
||||
|
||||
def test_nchw_all(self):
|
||||
self.run_test_all()
|
||||
|
||||
def test_nhwc(self):
|
||||
self.data_layout = 'NHWC'
|
||||
self.run_test_all()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue