Merge pull request #10150 from chengduoZH/fix_elementwise_gradient
Fix elementwise_gradient bugrelease/0.12.0
commit
bfbbe19fbb
@ -0,0 +1,103 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
|
||||
|
||||
class TestElementWiseAddOp(unittest.TestCase):
|
||||
def __assert_close(self, tensor, np_array, msg, atol=1e-4):
|
||||
self.assertTrue(np.allclose(np.array(tensor), np_array, atol=atol), msg)
|
||||
|
||||
def check_forward_backward(self):
|
||||
def test_with_place(place):
|
||||
out_grad = np.random.random_sample(self.x.shape).astype(np.float32)
|
||||
x_grad = out_grad
|
||||
sum_axis = range(0, len(self.x.shape))
|
||||
del sum_axis[self.axis]
|
||||
y_grad = np.sum(out_grad, axis=tuple(sum_axis))
|
||||
|
||||
var_dict = locals()
|
||||
var_dict['y'] = self.y
|
||||
var_dict['x'] = self.x
|
||||
var_dict['out'] = self.out
|
||||
var_dict['y@GRAD'] = y_grad
|
||||
var_dict['x@GRAD'] = x_grad
|
||||
var_dict['out@GRAD'] = out_grad
|
||||
|
||||
var_names = ['x', 'y', 'out', 'y@GRAD', 'x@GRAD', 'out@GRAD']
|
||||
ground_truth = {name: var_dict[name] for name in var_names}
|
||||
|
||||
program = fluid.Program()
|
||||
with fluid.program_guard(program):
|
||||
block = program.global_block()
|
||||
for name in ground_truth:
|
||||
block.create_var(
|
||||
name=name,
|
||||
dtype='float32',
|
||||
shape=ground_truth[name].shape)
|
||||
elementwise_add_op = block.append_op(
|
||||
type="elementwise_add",
|
||||
inputs={
|
||||
"X": block.var('x'),
|
||||
"Y": block.var('y'),
|
||||
},
|
||||
outputs={"Out": block.var('out'), },
|
||||
attrs={"axis": self.axis, })
|
||||
|
||||
# generate backward op_desc
|
||||
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
|
||||
elementwise_add_op.desc, set(), [])
|
||||
grad_op_desc = grad_op_desc_list[0]
|
||||
new_op_desc = block.desc.append_op()
|
||||
new_op_desc.copy_from(grad_op_desc)
|
||||
for var_name in grad_op_desc.output_arg_names():
|
||||
block.desc.var(var_name.encode("ascii"))
|
||||
grad_op_desc.infer_var_type(block.desc)
|
||||
grad_op_desc.infer_shape(block.desc)
|
||||
for arg in grad_op_desc.output_arg_names():
|
||||
grad_var = block.desc.find_var(arg.encode("ascii"))
|
||||
grad_var.set_dtype(core.VarDesc.VarType.FP32)
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
out = exe.run(program,
|
||||
feed={
|
||||
name: var_dict[name]
|
||||
for name in ['x', 'y', 'out@GRAD']
|
||||
},
|
||||
fetch_list=['x@GRAD', 'y@GRAD'])
|
||||
self.__assert_close(x_grad, out[0], "x@GRAD")
|
||||
self.__assert_close(y_grad, out[1], "y@GRAD", atol=1.4)
|
||||
|
||||
places = [core.CPUPlace()]
|
||||
if core.is_compiled_with_cuda() and core.op_support_gpu(
|
||||
"elementwise_add"):
|
||||
places.append(core.CUDAPlace(0))
|
||||
|
||||
for place in places:
|
||||
test_with_place(place)
|
||||
|
||||
def test_check_forward_backward_with_scale_and_bias(self):
|
||||
np.random.seed(123)
|
||||
self.x = np.random.random((4, 32, 220, 220)).astype(np.float32)
|
||||
self.y = np.random.random((32)).astype(np.float32)
|
||||
self.out = self.x + self.y.reshape(1, 32, 1, 1)
|
||||
self.axis = 1
|
||||
self.check_forward_backward()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue