parent
0d9846f3c0
commit
c108d6108c
@ -0,0 +1,71 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/identity_op.h"
|
||||
#include "paddle/operators/net_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class IdentityOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
IdentityOp(const std::string &type, const VarNameMap &inputs,
|
||||
const VarNameMap &outputs, const framework::AttributeMap &attrs)
|
||||
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
auto *in = ctx.Input<framework::Tensor>("X");
|
||||
auto *out = ctx.Output<framework::Tensor>("Out");
|
||||
out->Resize(in->dims());
|
||||
}
|
||||
};
|
||||
|
||||
class IdentityOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
IdentityOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The input tensor of identity operator.").NotInGradient();
|
||||
AddOutput("Out", "The output tensor of identity operator.").NotInGradient();
|
||||
AddComment(R"DOC(Identity operator
|
||||
|
||||
The equation is: Out = X
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
// Identity Op's gradient is identity op, too.
|
||||
// Grad(Out=identity_op(X)) => Grad(X) = identity_op(Grad(Out))
|
||||
class IdentityGradOp : public NetOp {
|
||||
public:
|
||||
IdentityGradOp(const std::string &type, const VarNameMap &inputs,
|
||||
const VarNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: NetOp(type, inputs, outputs, attrs) {
|
||||
AddOp(framework::OpRegistry::CreateOp(
|
||||
"identity", {{"X", {Input(framework::GradVarName("Out"))}}},
|
||||
{{"Out", {Output(framework::GradVarName("X"))}}}, {}));
|
||||
CompleteAddOp(false);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP(identity, ops::IdentityOp, ops::IdentityOpMaker, identity_grad,
|
||||
ops::IdentityGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(identity, ops::IdentityKernel<float>);
|
@ -0,0 +1,17 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/identity_op.h"
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(identity, paddle::operators::IdentityKernel<float>);
|
@ -0,0 +1,32 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/memory/memcpy.h"
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
template <typename T>
|
||||
class IdentityKernel : public framework::OpKernel {
|
||||
public:
|
||||
virtual void Compute(const framework::ExecutionContext& context) const {
|
||||
auto* tensor = context.Output<framework::Tensor>("Out");
|
||||
auto* in = context.Input<framework::Tensor>("X");
|
||||
tensor->CopyFrom<T>(*in, in->place());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,24 @@
|
||||
import unittest
|
||||
from op_test_util import OpTestMeta
|
||||
from gradient_checker import GradientChecker, create_op
|
||||
import numpy as np
|
||||
|
||||
|
||||
class IdentityTest(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "identity"
|
||||
self.inputs = {'X': np.random.random((32, 784)).astype("float32")}
|
||||
self.outputs = {'Out': self.inputs['X']}
|
||||
|
||||
|
||||
class IdentityGradOpTest(GradientChecker):
|
||||
def test_normal(self):
|
||||
op = create_op("identity")
|
||||
inputs = {"X": np.random.random((10, 10)).astype("float32")}
|
||||
self.check_grad(op, inputs, set("X"), "Out")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue