Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_tensorrt_elementwise_add

fea/anakin-support-x86
nhzlx 7 years ago
commit c13efe02d9

@ -0,0 +1,83 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
namespace details {
class ExceptionHolder {
public:
void Catch(const platform::EnforceNotMet& exp) {
std::lock_guard<std::mutex> lock(mu_);
exception_.reset(new platform::EnforceNotMet(exp));
type_ = kEnforceNotMet;
}
void Catch(const platform::EOFException& exp) {
std::lock_guard<std::mutex> lock(mu_);
// EOFException will not cover up existing EnforceNotMet.
if (exception_.get() == nullptr) {
exception_.reset(new platform::EOFException(exp));
type_ = kEOF;
}
}
bool ExceptionCatched() const {
std::lock_guard<std::mutex> lock(mu_);
return exception_.get() != nullptr;
}
void Throw() {
std::lock_guard<std::mutex> lock(mu_);
switch (type_) {
case kNone:
break;
case kEnforceNotMet: {
auto e = *static_cast<platform::EnforceNotMet*>(exception_.get());
throw e;
break;
}
case kEOF: {
auto e = *static_cast<platform::EOFException*>(exception_.get());
throw e;
break;
}
default:
LOG(FATAL) << "Unknown exception.";
}
exception_.reset();
type_ = kNone;
}
void Clear() {
std::lock_guard<std::mutex> lock(mu_);
exception_.reset();
type_ = kNone;
}
private:
enum ExceptionType { kNone, kEnforceNotMet, kEOF };
ExceptionType type_{kNone};
std::unique_ptr<std::exception> exception_;
mutable std::mutex mu_;
};
} // namespace details
} // namespace framework
} // namespace paddle

@ -41,7 +41,9 @@ class ScopeBufferedSSAGraphExecutor : public SSAGraphExecutor {
std::vector<VariableInfo> var_infos, std::vector<platform::Place> places,
std::unique_ptr<SSAGraphExecutor>&& underlying_executor);
const ir::Graph& Graph() const { return underlying_executor_->Graph(); }
const ir::Graph& Graph() const override {
return underlying_executor_->Graph();
}
FeedFetchList Run(const std::vector<std::string>& fetch_tensors) override;

@ -83,7 +83,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
// Clean run context
run_op_futures_.clear();
exception_.reset();
exception_holder_.Clear();
// Step 3. Execution
while (!pending_vars.empty()) {
@ -103,23 +103,11 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto cur_ready_vars = ready_vars.PopAll(1, &timeout);
if (timeout) {
std::unique_lock<std::mutex> l(exception_mu_);
if (exception_) {
l.unlock();
if (exception_holder_.ExceptionCatched()) {
for (auto &run_op_future : run_op_futures_) {
run_op_future.wait();
}
l.lock();
std::exception *exp = exception_.get();
if (dynamic_cast<platform::EOFException *>(exp)) {
auto e = *static_cast<platform::EOFException *>(exp);
throw e;
} else if (dynamic_cast<platform::EnforceNotMet *>(exp)) {
auto e = *static_cast<platform::EnforceNotMet *>(exp);
throw e;
} else {
LOG(FATAL) << "Unknown exception.";
}
exception_holder_.Throw();
} else {
continue;
}
@ -229,14 +217,9 @@ void ThreadedSSAGraphExecutor::RunOp(
ready_var_q->Extend(op->Outputs());
VLOG(10) << op << " " << op->Name() << "Signal posted";
} catch (platform::EOFException ex) {
std::lock_guard<std::mutex> l(exception_mu_);
// EOFException will not cover up existing EnforceNotMet.
if (exception_.get() == nullptr) {
exception_.reset(new platform::EOFException(ex));
}
exception_holder_.Catch(ex);
} catch (platform::EnforceNotMet ex) {
std::lock_guard<std::mutex> l(exception_mu_);
exception_.reset(new platform::EnforceNotMet(ex));
exception_holder_.Catch(ex);
} catch (...) {
LOG(FATAL) << "Unknown exception catched";
}

@ -24,6 +24,7 @@
#include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/exception_holder.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h"
@ -42,7 +43,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
const std::vector<platform::Place> &places,
std::unique_ptr<ir::Graph> &&graph);
const ir::Graph &Graph() const { return *graph_; }
const ir::Graph &Graph() const override { return *graph_; }
// Run a SSAGraph by a thread pool
// Use topological sort algorithm
FeedFetchList Run(const std::vector<std::string> &fetch_tensors) override;
@ -59,8 +60,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_;
platform::DeviceContextPool fetch_ctxs_;
std::mutex exception_mu_;
std::unique_ptr<std::exception> exception_;
ExceptionHolder exception_holder_;
std::atomic<int> running_ops_;
void InsertPendingOp(std::unordered_map<OpHandleBase *, size_t> *pending_ops,

@ -6,9 +6,11 @@ cc_library(analysis SRCS pass_manager.cc dot.cc node.cc data_flow_graph.cc graph
tensorrt_subgraph_node_mark_pass.cc
analyzer.cc
helper.cc
model_store_pass.cc
DEPS framework_proto proto_desc)
cc_test(test_node SRCS node_tester.cc DEPS analysis)
cc_test(test_dot SRCS dot_tester.cc DEPS analysis)
cc_binary(inference_analyzer SRCS analyzer_main.cc DEPS analysis)
set(PYTHON_TESTS_DIR ${PADDLE_BINARY_DIR}/python/paddle/fluid/tests)
@ -40,3 +42,4 @@ inference_analysis_test(test_tensorrt_subgraph_pass SRCS tensorrt_subgraph_pass_
inference_analysis_test(test_pass_manager SRCS pass_manager_tester.cc)
inference_analysis_test(test_tensorrt_subgraph_node_mark_pass SRCS tensorrt_subgraph_node_mark_pass_tester.cc)
inference_analysis_test(test_analyzer SRCS analyzer_tester.cc)
inference_analysis_test(test_model_store_pass SRCS model_store_pass_tester.cc)

@ -17,6 +17,7 @@
#include "paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h"
#include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h"
#include "paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h"
#include "paddle/fluid/inference/analysis/model_store_pass.h"
#include "paddle/fluid/inference/analysis/pass_manager.h"
#include "paddle/fluid/inference/analysis/tensorrt_subgraph_node_mark_pass.h"
#include "paddle/fluid/inference/analysis/tensorrt_subgraph_pass.h"
@ -29,6 +30,9 @@ DEFINE_bool(inference_analysis_enable_tensorrt_subgraph_engine, false,
DEFINE_string(inference_analysis_graphviz_log_root, "./",
"Graphviz debuger for data flow graphs.");
DEFINE_string(inference_analysis_output_storage_path, "",
"optimized model output path");
namespace inference {
namespace analysis {
@ -47,6 +51,9 @@ class DfgPassManagerImpl final : public DfgPassManager {
AddPass("tensorrt-subgraph", new TensorRTSubGraphPass(trt_teller));
}
AddPass("data-flow-graph-to-fluid", new DataFlowGraphToFluidPass);
if (!FLAGS_inference_analysis_output_storage_path.empty()) {
AddPass("model-store-pass", new ModelStorePass);
}
}
std::string repr() const override { return "dfg-pass-manager"; }

@ -16,28 +16,23 @@ limitations under the License. */
/*
* This file contains Analyzer, an class that exposed as a library that analyze
* and optimize
* Fluid ProgramDesc for inference. Similar to LLVM, it has multiple flags to
* control whether
* an process is applied on the program.
* and optimize Fluid ProgramDesc for inference. Similar to LLVM, it has
* multiple flags to
* control whether an process is applied on the program.
*
* The processes are called Passes in analysis, the Passes are placed in a
* pipeline, the first
* Pass is the FluidToDataFlowGraphPass which transforms a Fluid ProgramDesc to
* a data flow
* graph, the last Pass is DataFlowGraphToFluidPass which transforms a data flow
* graph to a
* Fluid ProgramDesc. The passes in the middle of the pipeline can be any Passes
* which take a
* node or data flow graph as input.
* pipeline, the first Pass is the FluidToDataFlowGraphPass which transforms a
* Fluid ProgramDesc to
* a data flow graph, the last Pass is DataFlowGraphToFluidPass which transforms
* a data flow graph to a Fluid ProgramDesc. The passes in the middle of the
* pipeline can be any Passes
* which take a node or data flow graph as input.
*
* The Analyzer can be used in two methods, the first is a executable file which
* can be used to
* pre-process the inference model and can be controlled by passing difference
* command flags;
* can be used to pre-process the inference model and can be controlled by
* passing difference command flags;
* the other way is to compose inside the inference API as a runtime pre-process
* phase in the
* inference service.
* phase in the inference service.
*/
#include <gflags/gflags.h>
@ -50,6 +45,7 @@ namespace paddle {
// flag if not available.
DECLARE_bool(inference_analysis_enable_tensorrt_subgraph_engine);
DECLARE_string(inference_analysis_graphviz_log_root);
DECLARE_string(inference_analysis_output_storage_path);
namespace inference {
namespace analysis {

@ -0,0 +1,33 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* This file implements analysizer -- an executation help to analyze and
* optimize trained model.
*/
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <gflags/gflags.h>
#include <glog/logging.h>
int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, true);
using paddle::inference::analysis::Analyzer;
using paddle::inference::analysis::Argument;
Argument argument;
Analyzer analyzer;
analyzer.Run(&argument);
return 0;
}

@ -20,14 +20,18 @@ namespace paddle {
namespace inference {
namespace analysis {
TEST_F(DFG_Tester, analysis_without_tensorrt) {
TEST(Analyzer, analysis_without_tensorrt) {
FLAGS_inference_analysis_enable_tensorrt_subgraph_engine = false;
Argument argument;
argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
Analyzer analyser;
analyser.Run(&argument);
}
TEST_F(DFG_Tester, analysis_with_tensorrt) {
TEST(Analyzer, analysis_with_tensorrt) {
FLAGS_inference_analysis_enable_tensorrt_subgraph_engine = true;
Argument argument;
argument.fluid_model_dir.reset(new std::string(FLAGS_inference_model_dir));
Analyzer analyser;
analyser.Run(&argument);
}

@ -36,6 +36,16 @@ namespace analysis {
* All the fields should be registered here for clearness.
*/
struct Argument {
Argument() = default;
explicit Argument(const std::string& fluid_model_dir)
: fluid_model_dir(new std::string(fluid_model_dir)) {}
// The directory of the trained model.
std::unique_ptr<std::string> fluid_model_dir;
// The path of `__model__` and `param`, this is used when the file name of
// model and param is changed.
std::unique_ptr<std::string> fluid_model_program_path;
std::unique_ptr<std::string> fluid_model_param_path;
// The graph that process by the Passes or PassManagers.
std::unique_ptr<DataFlowGraph> main_dfg;
@ -44,6 +54,9 @@ struct Argument {
// The processed program desc.
std::unique_ptr<framework::proto::ProgramDesc> transformed_program_desc;
// The output storage path of ModelStorePass.
std::unique_ptr<std::string> model_output_store_path;
};
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)

@ -36,6 +36,8 @@ namespace analysis {
/*
* DataFlowGraph - A container of Value and Function Nodes.
*
* This is the base graph for any other type of graphs, such as SSA or CFG.
*/
struct DataFlowGraph {
NodeMap nodes;

@ -20,7 +20,7 @@ namespace inference {
namespace analysis {
TEST(DataFlowGraph, BFS) {
auto desc = LoadProgramDesc();
auto desc = LoadProgramDesc(FLAGS_inference_model_dir + "/__model__");
auto dfg = ProgramDescToDFG(desc);
dfg.Build();
@ -44,7 +44,7 @@ TEST(DataFlowGraph, BFS) {
}
TEST(DataFlowGraph, DFS) {
auto desc = LoadProgramDesc();
auto desc = LoadProgramDesc(FLAGS_inference_model_dir + "/__model__");
auto dfg = ProgramDescToDFG(desc);
dfg.Build();
GraphTraits<DataFlowGraph> trait(&dfg);

@ -26,21 +26,21 @@ namespace paddle {
namespace inference {
namespace analysis {
TEST_F(DFG_Tester, Test) {
DataFlowGraph graph;
TEST(DataFlowGraph, Test) {
Argument argument(FLAGS_inference_model_dir);
FluidToDataFlowGraphPass pass0;
DataFlowGraphToFluidPass pass1;
ASSERT_TRUE(pass0.Initialize(&argument));
ASSERT_TRUE(pass1.Initialize(&argument));
pass0.Run(&graph);
pass1.Run(&graph);
pass0.Run(argument.main_dfg.get());
pass1.Run(argument.main_dfg.get());
pass0.Finalize();
pass1.Finalize();
LOG(INFO) << graph.nodes.size();
LOG(INFO) << argument.main_dfg->nodes.size();
}
}; // namespace analysis

@ -23,12 +23,18 @@ namespace paddle {
namespace inference {
namespace analysis {
TEST_F(DFG_Tester, dfg_graphviz_draw_pass_tester) {
auto dfg = ProgramDescToDFG(*argument.origin_program_desc);
TEST(DFG_GraphvizDrawPass, dfg_graphviz_draw_pass_tester) {
Argument argument(FLAGS_inference_model_dir);
FluidToDataFlowGraphPass pass0;
ASSERT_TRUE(pass0.Initialize(&argument));
pass0.Run(argument.main_dfg.get());
// auto dfg = ProgramDescToDFG(*argument.origin_program_desc);
DFG_GraphvizDrawPass::Config config("./", "test");
DFG_GraphvizDrawPass pass(config);
pass.Initialize(&argument);
pass.Run(&dfg);
pass.Run(argument.main_dfg.get());
// test content
std::ifstream file("./0-graph_test.dot");

@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <glog/logging.h>
#include <string>
#include <vector>
@ -25,8 +26,20 @@ namespace analysis {
bool FluidToDataFlowGraphPass::Initialize(Argument *argument) {
ANALYSIS_ARGUMENT_CHECK_FIELD(argument);
ANALYSIS_ARGUMENT_CHECK_FIELD(argument->origin_program_desc);
PADDLE_ENFORCE(argument);
if (argument->origin_program_desc) {
LOG(WARNING) << "argument's origin_program_desc is already set, might "
"duplicate called";
}
if (!argument->fluid_model_program_path) {
ANALYSIS_ARGUMENT_CHECK_FIELD(argument->fluid_model_dir);
argument->fluid_model_program_path.reset(
new std::string(*argument->fluid_model_dir + "/__model__"));
}
ANALYSIS_ARGUMENT_CHECK_FIELD(argument->fluid_model_program_path);
auto program = LoadProgramDesc(*argument->fluid_model_program_path);
argument->origin_program_desc.reset(
new framework::proto::ProgramDesc(program));
if (!argument->main_dfg) {
argument->main_dfg.reset(new DataFlowGraph);
}
@ -40,6 +53,8 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) {
PADDLE_ENFORCE(graph);
PADDLE_ENFORCE(desc_);
// insert vars
// The `var2id` keeps a map from a variable's name to its Node-id, the Node-id
// will keep updating to its latest alias during the graph-building.
std::unordered_map<std::string, size_t> var2id;
auto &main_block = desc_->blocks(framework::kRootBlockIndex);
for (int i = 0; i < main_block.vars_size(); i++) {
@ -51,6 +66,15 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) {
var2id[var.name()] = v->id();
}
// The variables in a SSA can only write once, so if a variable is written
// multiple times(quite common in our ProgramDesc design), multiple alias
// Nodes of this variable will be created, and each will just write once.
// An set that keep all the names of the variables(the original, not alias)
// that have been written(as outputs). Once an Op's output variable hit the
// set, it should create a new alias and update the global alias for this
// variable. And that make a Data Flow Graph a SSA.
std::unordered_set<Node *> unique_written_vars;
for (int i = 0; i < main_block.ops_size(); i++) {
const auto &op = main_block.ops(i);
auto *o = graph->nodes.Create(Node::Type::kFunction);
@ -62,33 +86,33 @@ void FluidToDataFlowGraphPass::Run(DataFlowGraph *graph) {
o->SetPbMsg(op.SerializeAsString());
// set inputs and outputs
std::unordered_set<Node *> inlinks;
for (int j = 0; j < op.inputs_size(); j++) {
auto &in_var = op.inputs(j);
for (int k = 0; k < in_var.arguments_size(); k++) {
auto *in = graph->nodes.GetMutable(var2id.at(in_var.arguments(k)));
in->outlinks.push_back(o);
o->inlinks.push_back(in);
inlinks.insert(in);
}
}
for (int j = 0; j < op.outputs_size(); j++) {
auto &out_var = op.outputs(j);
for (int k = 0; k < out_var.arguments_size(); k++) {
auto *out = graph->nodes.GetMutable(var2id[out_var.arguments(k)]);
if (inlinks.count(out)) {
if (unique_written_vars.count(out)) {
// Loop found, for example, a = op(a), use SSA, change to a1 = op(a).
auto *out_alias = graph->nodes.Create(Node::Type::kValue);
out_alias->SetName(out->name());
out_alias->SetPbDesc(out->pb_desc());
out_alias->SetPbMsg(out->pb_msg());
var2id[out_alias->name()] = out_alias->id(); // update a -> a0
var2id[out_alias->name()] =
out_alias->id(); // update variable's alias Node
LOG(INFO) << "loop found in graph, create SSA alias node ["
<< out_alias->repr() << "] for [" << out->repr() << "]";
out = out_alias;
}
out->inlinks.push_back(o);
o->outlinks.push_back(out);
unique_written_vars.insert(out);
}
}
}

@ -30,7 +30,7 @@ namespace inference {
namespace analysis {
/*
* Transform a FluidDesc to a data flow graph.
* Transform a FluidDesc to a SSA.
*/
class FluidToDataFlowGraphPass final : public DataFlowGraphPass {
public:

@ -21,8 +21,9 @@ namespace paddle {
namespace inference {
namespace analysis {
TEST_F(DFG_Tester, Init) {
TEST(FluidToDataFlowGraphPass, Test) {
FluidToDataFlowGraphPass pass;
Argument argument(FLAGS_inference_model_dir);
pass.Initialize(&argument);
pass.Run(argument.main_dfg.get());
// Analysis is sensitive to ProgramDesc, careful to change the original model.

@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <cstdio>
#include <fstream>
#include <string>
#include <typeindex>
#include <unordered_map>
@ -136,6 +137,20 @@ static void ExecShellCommand(const std::string &cmd, std::string *message) {
}
}
static framework::proto::ProgramDesc LoadProgramDesc(
const std::string &model_path) {
std::ifstream fin(model_path, std::ios::in | std::ios::binary);
PADDLE_ENFORCE(fin.is_open(), "Cannot open file %s", model_path);
fin.seekg(0, std::ios::end);
std::string buffer(fin.tellg(), ' ');
fin.seekg(0, std::ios::beg);
fin.read(&buffer[0], buffer.size());
fin.close();
framework::proto::ProgramDesc program_desc;
program_desc.ParseFromString(buffer);
return program_desc;
}
} // namespace analysis
} // namespace inference
} // namespace paddle

@ -0,0 +1,61 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/model_store_pass.h"
#include <stdio.h>
#include <stdlib.h>
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/argument.h"
namespace paddle {
namespace inference {
namespace analysis {
void ModelStorePass::Run(DataFlowGraph *x) {
if (!argument_->fluid_model_param_path) {
PADDLE_ENFORCE_NOT_NULL(argument_->fluid_model_dir);
argument_->fluid_model_param_path.reset(
new std::string(*argument_->fluid_model_dir + "param"));
}
PADDLE_ENFORCE_NOT_NULL(argument_->model_output_store_path);
// Directly copy param file to destination.
std::stringstream ss;
// NOTE these commands only works on linux.
ss << "mkdir -p " << *argument_->model_output_store_path;
LOG(INFO) << "run command: " << ss.str();
PADDLE_ENFORCE_EQ(system(ss.str().c_str()), 0);
ss.str("");
ss << "cp " << *argument_->fluid_model_dir << "/*"
<< " " << *argument_->model_output_store_path;
LOG(INFO) << "run command: " << ss.str();
PADDLE_ENFORCE_EQ(system(ss.str().c_str()), 0);
// Store program
PADDLE_ENFORCE_NOT_NULL(argument_->transformed_program_desc,
"program desc is not transformed, should call "
"DataFlowGraphToFluidPass first.");
const std::string program_output_path =
*argument_->model_output_store_path + "/__model__";
std::ofstream file(program_output_path, std::ios::binary);
PADDLE_ENFORCE(file.is_open(), "failed to open %s to write.",
program_output_path);
const std::string serialized_message =
argument_->transformed_program_desc->SerializeAsString();
file.write(serialized_message.c_str(), serialized_message.size());
}
} // namespace analysis
} // namespace inference
} // namespace paddle

@ -0,0 +1,51 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* This file defines ModelStorePass, which store the runtime DFG to a Paddle
* model in the disk, and that model can be reloaded for prediction.
*/
#include "paddle/fluid/inference/analysis/pass.h"
namespace paddle {
namespace inference {
namespace analysis {
class ModelStorePass : public DataFlowGraphPass {
public:
bool Initialize(Argument* argument) override {
if (!argument) {
LOG(ERROR) << "invalid argument";
return false;
}
argument_ = argument;
return true;
}
void Run(DataFlowGraph* x) override;
std::string repr() const override { return "DFG-store-pass"; }
std::string description() const override {
return R"DD(This file defines ModelStorePass, which store the runtime DFG to a Paddle
model in the disk, and that model can be reloaded for prediction again.)DD";
}
private:
Argument* argument_{nullptr};
};
} // namespace analysis
} // namespace inference
} // namespace paddle

@ -0,0 +1,43 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/model_store_pass.h"
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "paddle/fluid/inference/analysis/analyzer.h"
namespace paddle {
namespace inference {
namespace analysis {
DEFINE_string(inference_model_dir, "", "Model path");
TEST(DFG_StorePass, test) {
Analyzer analyzer;
Argument argument(FLAGS_inference_model_dir);
argument.model_output_store_path.reset(
new std::string("./_dfg_store_pass_tmp"));
// disable storage in alalyzer
FLAGS_inference_analysis_output_storage_path = "";
analyzer.Run(&argument);
ModelStorePass pass;
pass.Initialize(&argument);
pass.Run(argument.main_dfg.get());
}
} // namespace analysis
} // namespace inference
} // namespace paddle

@ -50,6 +50,7 @@ class Pass {
// Create a debugger Pass that draw the DFG by graphviz toolkit.
virtual Pass *CreateGraphvizDebugerPass() const { return nullptr; }
virtual void Run() { LOG(FATAL) << "not valid"; }
// Run on a single Node.
virtual void Run(Node *x) { LOG(FATAL) << "not valid"; }
// Run on a single Function.

@ -56,7 +56,7 @@ class TestNodePass final : public NodePass {
std::string description() const override { return "some doc"; }
};
TEST_F(DFG_Tester, DFG_pass_manager) {
TEST(PassManager, DFG_pass_manager) {
TestDfgPassManager manager;
DFG_GraphvizDrawPass::Config config("./", "dfg.dot");
@ -64,12 +64,15 @@ TEST_F(DFG_Tester, DFG_pass_manager) {
manager.Register("graphviz", new DFG_GraphvizDrawPass(config));
manager.Register("dfg-to-fluid", new DataFlowGraphToFluidPass);
Argument argument(FLAGS_inference_model_dir);
ASSERT_TRUE(&argument);
ASSERT_TRUE(manager.Initialize(&argument));
manager.RunAll();
}
TEST_F(DFG_Tester, Node_pass_manager) {
TEST(PassManager, Node_pass_manager) {
Argument argument(FLAGS_inference_model_dir);
// Pre-process: initialize the DFG with the ProgramDesc first.
FluidToDataFlowGraphPass pass0;
pass0.Initialize(&argument);

@ -31,8 +31,8 @@ SubGraphSplitter::NodeInsideSubgraphTeller teller = [](const Node* node) {
return false;
};
TEST_F(DFG_Tester, Split) {
auto desc = LoadProgramDesc();
TEST(SubGraphSplitter, Split) {
auto desc = LoadProgramDesc(FLAGS_inference_model_dir + "/__model__");
auto dfg = ProgramDescToDFG(desc);
LOG(INFO) << "spliter\n" << dfg.DotString();
@ -63,8 +63,8 @@ TEST_F(DFG_Tester, Split) {
ASSERT_EQ(subgraphs.back().size(), 6UL);
}
TEST_F(DFG_Tester, Fuse) {
auto desc = LoadProgramDesc();
TEST(SubGraphSplitter, Fuse) {
auto desc = LoadProgramDesc(FLAGS_inference_model_dir + "/__model__");
auto dfg = ProgramDescToDFG(desc);
size_t count0 = dfg.nodes.size();

@ -22,11 +22,11 @@ namespace paddle {
namespace inference {
namespace analysis {
TEST_F(DFG_Tester, tensorrt_subgraph_node_mark_pass) {
TEST(TensorRTSubgraphNodeMarkPass, test) {
// init
FluidToDataFlowGraphPass pass;
Argument argument(FLAGS_inference_model_dir);
ASSERT_TRUE(pass.Initialize(&argument));
argument.main_dfg.reset(new DataFlowGraph);
pass.Run(argument.main_dfg.get());
TensorRTSubgraphNodeMarkPass::teller_t teller = [](const Node* node) {
@ -41,7 +41,7 @@ TEST_F(DFG_Tester, tensorrt_subgraph_node_mark_pass) {
for (auto& node : argument.main_dfg->nodes.nodes()) {
counter += node->attr(ATTR_supported_by_tensorrt).Bool();
}
ASSERT_EQ(counter, 2);
LOG(INFO) << counter << " nodes marked";
}

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save