|
|
|
@ -29,19 +29,23 @@ IMAGE_SIZE = 784
|
|
|
|
|
CLASS_NUM = 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# define a random dataset
|
|
|
|
|
class RandomDataset(paddle.io.Dataset):
|
|
|
|
|
def __init__(self, num_samples):
|
|
|
|
|
self.num_samples = num_samples
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
|
def random_batch_reader():
|
|
|
|
|
def _get_random_inputs_and_labels():
|
|
|
|
|
np.random.seed(SEED)
|
|
|
|
|
image = np.random.random([IMAGE_SIZE]).astype('float32')
|
|
|
|
|
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
|
|
|
|
|
image = np.random.random([BATCH_SIZE, IMAGE_SIZE]).astype('float32')
|
|
|
|
|
label = np.random.randint(0, CLASS_NUM - 1, (
|
|
|
|
|
BATCH_SIZE,
|
|
|
|
|
1, )).astype('int64')
|
|
|
|
|
return image, label
|
|
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
|
return self.num_samples
|
|
|
|
|
def __reader__():
|
|
|
|
|
for _ in range(BATCH_NUM):
|
|
|
|
|
batch_image, batch_label = _get_random_inputs_and_labels()
|
|
|
|
|
batch_image = paddle.to_tensor(batch_image)
|
|
|
|
|
batch_label = paddle.to_tensor(batch_label)
|
|
|
|
|
yield batch_image, batch_label
|
|
|
|
|
|
|
|
|
|
return __reader__
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LinearNet(nn.Layer):
|
|
|
|
@ -66,8 +70,7 @@ def train(layer, loader, loss_fn, opt):
|
|
|
|
|
class TestSaveLoad(unittest.TestCase):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
# enable dygraph mode
|
|
|
|
|
self.place = paddle.CPUPlace()
|
|
|
|
|
paddle.disable_static(self.place)
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
# config seed
|
|
|
|
|
paddle.manual_seed(SEED)
|
|
|
|
@ -81,14 +84,8 @@ class TestSaveLoad(unittest.TestCase):
|
|
|
|
|
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
|
|
|
|
|
|
|
|
|
|
# create data loader
|
|
|
|
|
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
|
|
|
|
|
loader = paddle.io.DataLoader(
|
|
|
|
|
dataset,
|
|
|
|
|
places=self.place,
|
|
|
|
|
batch_size=BATCH_SIZE,
|
|
|
|
|
shuffle=True,
|
|
|
|
|
drop_last=True,
|
|
|
|
|
num_workers=2)
|
|
|
|
|
# TODO: using new DataLoader cause unknown Timeout on windows, replace it
|
|
|
|
|
loader = random_batch_reader()
|
|
|
|
|
|
|
|
|
|
# train
|
|
|
|
|
train(layer, loader, loss_fn, adam)
|
|
|
|
@ -103,8 +100,8 @@ class TestSaveLoad(unittest.TestCase):
|
|
|
|
|
layer, opt = self.build_and_train_model()
|
|
|
|
|
|
|
|
|
|
# save
|
|
|
|
|
layer_save_path = "linear.pdparams"
|
|
|
|
|
opt_save_path = "linear.pdopt"
|
|
|
|
|
layer_save_path = "test_paddle_save_load.linear.pdparams"
|
|
|
|
|
opt_save_path = "test_paddle_save_load.linear.pdopt"
|
|
|
|
|
layer_state_dict = layer.state_dict()
|
|
|
|
|
opt_state_dict = opt.state_dict()
|
|
|
|
|
|
|
|
|
@ -120,7 +117,7 @@ class TestSaveLoad(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
# test save load in static mode
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
static_save_path = "static_mode_test/linear.pdparams"
|
|
|
|
|
static_save_path = "static_mode_test/test_paddle_save_load.linear.pdparams"
|
|
|
|
|
paddle.save(layer_state_dict, static_save_path)
|
|
|
|
|
load_static_state_dict = paddle.load(static_save_path)
|
|
|
|
|
self.check_load_state_dict(layer_state_dict, load_static_state_dict)
|
|
|
|
@ -133,15 +130,15 @@ class TestSaveLoad(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
# 2. test save path format error
|
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
|
paddle.save(layer_state_dict, "linear.model/")
|
|
|
|
|
paddle.save(layer_state_dict, "test_paddle_save_load.linear.model/")
|
|
|
|
|
|
|
|
|
|
# 3. test load path not exist error
|
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
|
paddle.load("linear.params")
|
|
|
|
|
paddle.load("test_paddle_save_load.linear.params")
|
|
|
|
|
|
|
|
|
|
# 4. test load old save path error
|
|
|
|
|
with self.assertRaises(ValueError):
|
|
|
|
|
paddle.load("linear")
|
|
|
|
|
paddle.load("test_paddle_save_load.linear")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|