Support backward of backward for Relu and add a new gradient checker by comparing theoretical and numerical Jacobian. (#16862)
* Support backward of backward and a new gradient checker * Rename decorators.py to decorator_helper.py, since Python on Windows CI has decorators package. 1. Add ReluDoubleGradMaker when register relu_grad. 2. Add a new gradient checker by comparing theoretical and numerical Jacobian. Check double gradients by double_grad_check.shanyi15-patch-1
parent
63d9fe3362
commit
c1c2633a63
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,72 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.layers as layers
|
||||
import paddle.fluid.core as core
|
||||
import gradient_checker
|
||||
|
||||
from decorator_helper import prog_scope
|
||||
|
||||
|
||||
class TestMulGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
prog = fluid.Program()
|
||||
with fluid.program_guard(prog):
|
||||
x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x')
|
||||
y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y')
|
||||
z = layers.mul(x=x, y=y)
|
||||
gradient_checker.grad_check([x, y], z, place=place)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestReluDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
# the shape of input variable shoule be clearly specified, not inlcude -1.
|
||||
shape = [2, 8]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
x.persistable = True
|
||||
y = layers.relu(x)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
x_arr[np.abs(x_arr) < 0.005] = 0.02
|
||||
|
||||
gradient_checker.double_grad_check(
|
||||
[x], y, x_init=x_arr, place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue