|
|
|
@ -9752,6 +9752,11 @@ def stack(x, axis=0):
|
|
|
|
|
assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
|
|
|
|
|
"number of the elements must be 1, but received %s." % len(x)
|
|
|
|
|
out_index = helper.create_variable_for_type_inference(dtype="int32")
|
|
|
|
|
|
|
|
|
|
for i in x:
|
|
|
|
|
check_variable_and_dtype(i, 'x', \
|
|
|
|
|
['float16', 'float32', 'float64', 'int32', 'int64'], 'stack')
|
|
|
|
|
|
|
|
|
|
helper.append_op(
|
|
|
|
|
type='tensor_array_to_tensor',
|
|
|
|
|
inputs={'X': x[0]},
|
|
|
|
@ -12237,6 +12242,9 @@ def space_to_depth(x, blocksize, name=None):
|
|
|
|
|
if not (isinstance(blocksize, int)):
|
|
|
|
|
raise ValueError("blocksize must be a python Int")
|
|
|
|
|
|
|
|
|
|
check_variable_and_dtype(x, 'x', \
|
|
|
|
|
['float16', 'float32', 'float64', 'int32', 'int64'], 'space_to_depth')
|
|
|
|
|
|
|
|
|
|
out = helper.create_variable_for_type_inference(dtype=x.dtype)
|
|
|
|
|
|
|
|
|
|
helper.append_op(
|
|
|
|
|