parent
5d536bcc16
commit
c22f7fcd17
@ -0,0 +1,104 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/positive_negative_pair_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class PositiveNegativePairOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasInput("Score"),
|
||||
"Input(Score) of PositiveNegativePairOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasInput("Label"),
|
||||
"Input(Label) of PositiveNegativePairOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasInput("QueryId"),
|
||||
"Input(QueryId) of PositiveNegativePairOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasOutput("PositivePair"),
|
||||
"Output(PositivePair) of PositiveNegativePairOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasOutput("NegativePair"),
|
||||
"Output(NegativePair) of PositiveNegativePairOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasOutput("NeutralPair"),
|
||||
"Output(NeutralPair) of PositiveNegativePairOp should not be null.");
|
||||
|
||||
auto score_dim = ctx->GetInputDim("Score");
|
||||
auto label_dim = ctx->GetInputDim("Label");
|
||||
auto query_dim = ctx->GetInputDim("QueryId");
|
||||
|
||||
PADDLE_ENFORCE(score_dim == label_dim,
|
||||
"Shape of Score must be the same as Label's shape.");
|
||||
PADDLE_ENFORCE(query_dim == label_dim,
|
||||
"Shape of QueryId must be the same as Label's shape.");
|
||||
PADDLE_ENFORCE(query_dim == label_dim,
|
||||
"Shape of QueryId must be the same as Label's shape.");
|
||||
|
||||
ctx->SetOutputDim("PositivePair", {1});
|
||||
ctx->SetOutputDim("NegativePair", {1});
|
||||
ctx->SetOutputDim("NeutralPair", {1});
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::DataType IndicateDataType(
|
||||
const framework::ExecutionContext &ctx) const override {
|
||||
return framework::ToDataType(ctx.Input<Tensor>("Score")->type());
|
||||
}
|
||||
};
|
||||
|
||||
class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
PositiveNegativePairOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Score",
|
||||
"(Tensor, float) Output score of the network on <query, document> "
|
||||
"pair.");
|
||||
AddInput("Label",
|
||||
"(Tensor, float or int) Label of current <query, document> pair.");
|
||||
AddInput("QueryId",
|
||||
"(Tensor, int) query id of current <query, document> pair.");
|
||||
AddOutput("PositivePair",
|
||||
"(float) Number of positive ranking pairs, i.e. the pairs of "
|
||||
"documents that are ranked correctly");
|
||||
AddOutput("NegativePair",
|
||||
"(float) Number of negative ranking pairs, i.e. the pairs of "
|
||||
"documents that are ranked incorrectly");
|
||||
AddOutput("NeutralPair",
|
||||
"(float) Number of neutral ranking pairs. A pair of document "
|
||||
"(doc#1, doc#2) is classified as \"neutral\" if their scores are "
|
||||
"the same.");
|
||||
AddComment(R"DOC(
|
||||
PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) model performance. Its outputs are usually
|
||||
further summarized as positive-negative-ratio: PositivePair/NegativePair.
|
||||
Its 3 inputs can be viewd as a series of 3 tuples: (predicition score, golden label, query id).
|
||||
For each unique query id, a list of <score, label> are collected and positive/negative pairs are accumulated to its output.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(positive_negative_pair,
|
||||
ops::PositiveNegativePairOp,
|
||||
ops::PositiveNegativePairOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
positive_negative_pair,
|
||||
ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,92 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
using LoDTensor = framework::LoDTensor;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class PositiveNegativePairKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto score_t = context.Input<Tensor>("Score");
|
||||
auto label_t = context.Input<Tensor>("Label");
|
||||
auto query_t = context.Input<Tensor>("QueryId");
|
||||
auto positive_t = context.Output<Tensor>("PositivePair");
|
||||
auto negative_t = context.Output<Tensor>("NegativePair");
|
||||
auto neutral_t = context.Output<Tensor>("NeutralPair");
|
||||
|
||||
auto score = score_t->data<float>();
|
||||
auto label = label_t->data<float>();
|
||||
auto query = query_t->data<int>();
|
||||
|
||||
T* positive = positive_t->mutable_data<T>(context.GetPlace());
|
||||
T* negative = negative_t->mutable_data<T>(context.GetPlace());
|
||||
T* neutral = neutral_t->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto score_dim = score_t->dims();
|
||||
PADDLE_ENFORCE_GE(score_dim.size(), 1L,
|
||||
"Rank of Score must be at least 1.");
|
||||
PADDLE_ENFORCE_LE(score_dim.size(), 2L,
|
||||
"Rank of Score must be less or equal to 2.");
|
||||
auto batch_size = score_dim[0];
|
||||
auto width = score_dim.size() > 1 ? score_dim[1] : 1;
|
||||
|
||||
// construct document instances for each query: Query => List[<score#0,
|
||||
// label#0>, ...]
|
||||
std::unordered_map<int, std::vector<std::pair<float, float>>> predictions;
|
||||
for (auto i = 0; i < batch_size; ++i) {
|
||||
if (predictions.find(query[i]) == predictions.end()) {
|
||||
predictions.emplace(
|
||||
std::make_pair(query[i], std::vector<std::pair<float, float>>()));
|
||||
}
|
||||
predictions[query[i]].push_back(
|
||||
std::make_pair(score[i * width + width - 1], label[i]));
|
||||
}
|
||||
|
||||
// for each query, accumulate pair counts
|
||||
T pos = 0, neg = 0, neu = 0;
|
||||
auto evaluate_one_list = [&pos, &neg,
|
||||
&neu](std::vector<std::pair<float, float>> vec) {
|
||||
for (auto ite1 = vec.begin(); ite1 != vec.end(); ++ite1) {
|
||||
for (auto ite2 = ite1 + 1; ite2 != vec.end(); ++ite2) {
|
||||
if (ite1->second == ite2->second) { // labels are equal, ignore.
|
||||
continue;
|
||||
}
|
||||
if (ite1->first == ite2->first) {
|
||||
++neu;
|
||||
}
|
||||
(ite1->first - ite2->first) * (ite1->second - ite2->second) > 0.0
|
||||
? pos++
|
||||
: neg++;
|
||||
}
|
||||
}
|
||||
};
|
||||
for (auto prediction : predictions) {
|
||||
evaluate_one_list(prediction.second);
|
||||
}
|
||||
|
||||
*positive = pos;
|
||||
*negative = neg;
|
||||
*neutral = neu;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,61 @@
|
||||
import unittest
|
||||
import itertools
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def py_pnpair_op(score, label, query):
|
||||
# group by query id
|
||||
predictions = {}
|
||||
for s, l, q in zip(score, label, query):
|
||||
if type(s) is list:
|
||||
s = s[-1]
|
||||
q = q[0]
|
||||
if q not in predictions:
|
||||
predictions[q] = []
|
||||
predictions[q].append((s, l))
|
||||
|
||||
# accumulate statistics
|
||||
pos, neg, neu = 0, 0, 0
|
||||
for _, ranks in predictions.items():
|
||||
for e1, e2 in itertools.combinations(ranks, 2):
|
||||
s1, s2, l1, l2 = e1[0][0], e2[0][0], e1[1][0], e2[1][0]
|
||||
if l1 == l2:
|
||||
continue
|
||||
if s1 == s2:
|
||||
neu += 1
|
||||
elif (s1 - s2) * (l1 - l2) > 0:
|
||||
pos += 1
|
||||
else:
|
||||
neg += 1
|
||||
|
||||
return np.array(pos).astype('float32'), np.array(neg).astype(
|
||||
'float32'), np.array(neu).astype('float32')
|
||||
|
||||
|
||||
class TestPositiveNegativePairOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = 'positive_negative_pair'
|
||||
batch_size = 20
|
||||
max_query_id = 5
|
||||
score = np.random.normal(size=(batch_size, 1)).astype('float32')
|
||||
label = np.random.normal(size=(batch_size, 1)).astype('float32')
|
||||
query = np.array(
|
||||
[np.random.randint(max_query_id) for i in range(batch_size)])
|
||||
query = np.reshape(query, newshape=(batch_size, 1)).astype('int32')
|
||||
|
||||
pos, neg, neu = py_pnpair_op(score, label, query)
|
||||
self.inputs = {}
|
||||
self.inputs = {'Score': score, 'Label': label, 'QueryId': query}
|
||||
self.outputs = {
|
||||
'PositivePair': pos,
|
||||
'NegativePair': neg,
|
||||
'NeutralPair': neu
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue