test(Pe): add dry run tests for pe (#14254)
Dry run tests will skip `Op.Run` and just perform job scheduling. It helps to analysis dead lock in PE. test=developrevert-14324-fix_vlog
parent
80132933b7
commit
c28beb8a3c
@ -0,0 +1,80 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import unittest
|
||||
import logging
|
||||
import six
|
||||
|
||||
|
||||
class TestBase(unittest.TestCase):
|
||||
def main(self,
|
||||
network_func,
|
||||
iter=100,
|
||||
iter_per_pe=100,
|
||||
use_gpu=True,
|
||||
use_experimental_executor=False):
|
||||
if use_gpu and not fluid.core.is_compiled_with_cuda():
|
||||
logging.warning(
|
||||
"Paddle is not compiled with CUDA, skip GPU unittests")
|
||||
return
|
||||
|
||||
main_prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
scope = fluid.Scope()
|
||||
with fluid.program_guard(main_prog, startup_prog):
|
||||
with fluid.scope_guard(scope):
|
||||
loss = network_func()
|
||||
fluid.Executor(
|
||||
fluid.CUDAPlace(0)
|
||||
if use_gpu else fluid.CPUPlace()).run(startup_prog)
|
||||
|
||||
for _ in six.moves.xrange(iter):
|
||||
exe_strategy = fluid.ExecutionStrategy()
|
||||
exe_strategy._dry_run = True
|
||||
exe_strategy.use_experimental_executor = use_experimental_executor
|
||||
pe = fluid.ParallelExecutor(
|
||||
use_cuda=True,
|
||||
loss_name=loss.name,
|
||||
main_program=main_prog,
|
||||
exec_strategy=exe_strategy)
|
||||
for _ in six.moves.xrange(iter_per_pe):
|
||||
pe.run([])
|
||||
|
||||
|
||||
class TestMNISTDryRun(TestBase):
|
||||
def test_mnist_dry_run(self):
|
||||
for use_gpu in (False, True):
|
||||
for use_experimental_executor in (False, True):
|
||||
self.main(
|
||||
network_func=TestMNISTDryRun.network_func,
|
||||
use_gpu=use_gpu,
|
||||
use_experimental_executor=use_experimental_executor)
|
||||
|
||||
@staticmethod
|
||||
def network_func():
|
||||
img = fluid.layers.data(name='img', shape=[784], dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
hidden = img
|
||||
for _ in six.moves.xrange(10):
|
||||
hidden = fluid.layers.fc(input=img, size=200, act='tanh')
|
||||
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
|
||||
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_loss = fluid.layers.mean(loss)
|
||||
fluid.optimizer.Adam().minimize(avg_loss)
|
||||
return avg_loss
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue