parent
96b4035dd1
commit
c2fbf8c5a7
@ -0,0 +1,118 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestConv3dOp(OpTest):
|
||||
def setUp(self):
|
||||
self.init_groups()
|
||||
self.op_type = "conv3d"
|
||||
batch_size = 2
|
||||
input_channels = 3
|
||||
input_depth = 5
|
||||
input_height = 5
|
||||
input_width = 5
|
||||
output_channels = 6
|
||||
filter_depth = 3
|
||||
filter_height = 3
|
||||
filter_width = 3
|
||||
stride = 1
|
||||
padding = 0
|
||||
output_depth = (input_depth - filter_depth + 2 * padding) / stride + 1
|
||||
output_height = (input_height - filter_height + 2 * padding
|
||||
) / stride + 1
|
||||
output_width = (input_width - filter_width + 2 * padding) / stride + 1
|
||||
input = np.random.random((batch_size, input_channels, input_depth,
|
||||
input_height, input_width)).astype("float32")
|
||||
|
||||
filter = np.random.random(
|
||||
(output_channels, input_channels / self.groups, filter_depth,
|
||||
filter_height, filter_width)).astype("float32")
|
||||
output = np.ndarray((batch_size, output_channels, output_depth,
|
||||
output_height, output_width))
|
||||
|
||||
self.inputs = {'Input': input, 'Filter': filter}
|
||||
self.attrs = {
|
||||
'strides': [1, 1, 1],
|
||||
'paddings': [0, 0, 0],
|
||||
'groups': self.groups
|
||||
}
|
||||
|
||||
output_group_channels = output_channels / self.groups
|
||||
input_group_channels = input_channels / self.groups
|
||||
for batchid in xrange(batch_size):
|
||||
for group in xrange(self.groups):
|
||||
for outchannelid in range(group * output_group_channels,
|
||||
(group + 1) * output_group_channels):
|
||||
for deepid in xrange(output_depth):
|
||||
for rowid in xrange(output_height):
|
||||
for colid in xrange(output_width):
|
||||
start_d = (deepid * stride) - padding
|
||||
start_h = (rowid * stride) - padding
|
||||
start_w = (colid * stride) - padding
|
||||
output_value = 0.0
|
||||
for inchannelid in range(
|
||||
group * input_group_channels,
|
||||
(group + 1) * input_group_channels):
|
||||
for fdeepid in xrange(filter_depth):
|
||||
for frowid in xrange(filter_height):
|
||||
for fcolid in xrange(filter_width):
|
||||
input_value = 0.0
|
||||
indeepid = start_d + fdeepid
|
||||
inrowid = start_h + frowid
|
||||
incolid = start_w + fcolid
|
||||
if ((indeepid >= 0 and
|
||||
indeepid < input_depth) and
|
||||
(inrowid >= 0 and
|
||||
inrowid < input_height) and
|
||||
(incolid >= 0 and
|
||||
incolid < input_width)):
|
||||
|
||||
input_value = input[
|
||||
batchid][inchannelid][
|
||||
indeepid][inrowid][
|
||||
incolid]
|
||||
filter_value = filter[
|
||||
outchannelid][
|
||||
inchannelid %
|
||||
input_group_channels][
|
||||
fdeepid][frowid][
|
||||
fcolid]
|
||||
output_value += input_value * filter_value
|
||||
output[batchid][outchannelid][deepid][rowid][
|
||||
colid] = output_value
|
||||
|
||||
self.outputs = {'Output': output}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(
|
||||
set(['Input', 'Filter']), 'Output', max_relative_error=0.05)
|
||||
|
||||
def test_check_grad_no_filter(self):
|
||||
self.check_grad(
|
||||
['Input'],
|
||||
'Output',
|
||||
max_relative_error=0.05,
|
||||
no_grad_set=set(['Filter']))
|
||||
|
||||
def test_check_grad_no_input(self):
|
||||
self.check_grad(
|
||||
['Filter'],
|
||||
'Output',
|
||||
max_relative_error=0.05,
|
||||
no_grad_set=set(['Input']))
|
||||
|
||||
def init_groups(self):
|
||||
self.groups = 1
|
||||
|
||||
|
||||
class TestWithGroup(TestConv3dOp):
|
||||
def init_groups(self):
|
||||
self.groups = 3
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue