|
|
|
@ -4,30 +4,84 @@ from gradient_checker import GradientChecker, create_op
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestSquaredL2DistanceOp(unittest.TestCase):
|
|
|
|
|
class TestSquaredL2DistanceOp_f0(unittest.TestCase):
|
|
|
|
|
__metaclass__ = OpTestMeta
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.type = 'squared_l2_distance'
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1., (2, 3)).astype('float32'),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1., (2, 3)).astype('float32')
|
|
|
|
|
'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1., (32, 64)).astype('float32')
|
|
|
|
|
}
|
|
|
|
|
subRes = self.inputs['X'] - self.inputs['Y']
|
|
|
|
|
output = subRes * subRes
|
|
|
|
|
sub_res = self.inputs['X'] - self.inputs['Y']
|
|
|
|
|
output = sub_res * sub_res
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'sub_result': subRes,
|
|
|
|
|
'sub_result': sub_res,
|
|
|
|
|
'Out': np.expand_dims(output.sum(1), 1)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestSquaredL2DistanceOp_f1(unittest.TestCase):
|
|
|
|
|
__metaclass__ = OpTestMeta
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.type = 'squared_l2_distance'
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1., (32, 64)).astype('float32'),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1., (1, 64)).astype('float32')
|
|
|
|
|
}
|
|
|
|
|
sub_res = self.inputs['X'] - self.inputs['Y']
|
|
|
|
|
output = sub_res * sub_res
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'sub_result': sub_res,
|
|
|
|
|
'Out': np.expand_dims(output.sum(1), 1)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestSquaredL2DistanceOp_f2(unittest.TestCase):
|
|
|
|
|
__metaclass__ = OpTestMeta
|
|
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.type = 'squared_l2_distance'
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1., (32, 64, 128)).astype('float32'),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1., (1, 64, 128)).astype('float32')
|
|
|
|
|
}
|
|
|
|
|
sub_res = self.inputs['X'] - self.inputs['Y']
|
|
|
|
|
sub_res = sub_res.reshape((32, 64 * 128))
|
|
|
|
|
output = sub_res * sub_res
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'sub_result': sub_res,
|
|
|
|
|
'Out': np.expand_dims(output.sum(1), 1)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestSquaredL2DistanceGradOp(GradientChecker):
|
|
|
|
|
def test_squared_l2_distance(self):
|
|
|
|
|
def test_squared_l2_distance_b0(self):
|
|
|
|
|
op = create_op("squared_l2_distance")
|
|
|
|
|
inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'),
|
|
|
|
|
'Y': np.random.uniform(0.1, .6, (2, 3)).astype('float32')
|
|
|
|
|
}
|
|
|
|
|
self.compare_grad(op, inputs)
|
|
|
|
|
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
|
|
|
|
|
|
|
|
|
|
def test_squared_l2_distance_b1(self):
|
|
|
|
|
op = create_op("squared_l2_distance")
|
|
|
|
|
inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, .6, (2, 3)).astype('float32'),
|
|
|
|
|
'Y': np.random.uniform(0.1, .6, (1, 3)).astype('float32')
|
|
|
|
|
}
|
|
|
|
|
self.compare_grad(op, inputs)
|
|
|
|
|
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
|
|
|
|
|
|
|
|
|
|
def test_squared_l2_distance_b2(self):
|
|
|
|
|
op = create_op("squared_l2_distance")
|
|
|
|
|
inputs = {
|
|
|
|
|
'X': np.random.uniform(0.1, 1., (2, 3)).astype('float32'),
|
|
|
|
|
'Y': np.random.uniform(0.1, 1., (2, 3)).astype('float32')
|
|
|
|
|
'X': np.random.uniform(0.1, .6, (2, 3, 4)).astype('float32'),
|
|
|
|
|
'Y': np.random.uniform(0.1, .6, (1, 3, 4)).astype('float32')
|
|
|
|
|
}
|
|
|
|
|
self.compare_grad(op, inputs)
|
|
|
|
|
self.check_grad(op, inputs, set(["X", "Y"]), "Out")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|