add Sampler/SequenceSampler/RandomSampler (#26375)
* add Sampler/SequenceSampler/RandomSampler. test=developrevert-24895-update_cub
parent
56890dc729
commit
c45481d7be
@ -0,0 +1,232 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
from __future__ import division
|
||||
|
||||
import numpy as np
|
||||
|
||||
__all__ = ["Sampler", "SequenceSampler", "RandomSampler"]
|
||||
|
||||
|
||||
class Sampler(object):
|
||||
"""
|
||||
An abstract class to encapsulate methods and behaviors of samplers.
|
||||
|
||||
All sampler used by :code:`paddle.io.BatchSampler` should be a subclass
|
||||
of :code:`paddle.io.Sampler`, BatchSampler subclasses should
|
||||
implement following methods:
|
||||
|
||||
:code:`__iter__`: return sample index iterably, which iterate over indices
|
||||
of dataset elements
|
||||
|
||||
:code:`__len__`: the number of sample in :attr:`data_source`
|
||||
|
||||
|
||||
Args:
|
||||
data_source(Dataset, optional): this could be an instance of
|
||||
:code:`paddle.io.Dataset` other Python object which
|
||||
implemented :code:`__len__` for Sampler to get indices
|
||||
as the range of :attr:`dataset` length. Default None.
|
||||
|
||||
Returns:
|
||||
Sampler: an iterable object for sample indices iterating
|
||||
|
||||
Examples:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from paddle.io import Dataset, Sampler
|
||||
|
||||
class RandomDataset(Dataset):
|
||||
def __init__(self, num_samples):
|
||||
self.num_samples = num_samples
|
||||
|
||||
def __getitem__(self, idx):
|
||||
image = np.random.random([784]).astype('float32')
|
||||
label = np.random.randint(0, 9, (1, )).astype('int64')
|
||||
return image, label
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
class MySampler(Sampler):
|
||||
def __init__(self, data_source):
|
||||
self.data_source = data_source
|
||||
|
||||
def __iter__(self):
|
||||
return iter(range(len(self.data_source)))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_source)
|
||||
|
||||
sampler = MySampler(data_source=RandomDataset(100))
|
||||
|
||||
for index in sampler:
|
||||
print(index)
|
||||
|
||||
see `paddle.io.BatchSampler`
|
||||
see `paddle.io.DataLoader`
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, data_source=None):
|
||||
self.data_source = data_source
|
||||
|
||||
def __iter__(self):
|
||||
raise NotImplementedError
|
||||
|
||||
# Not define __len__ method in this base class here for __len__
|
||||
# is not needed in same sence, e.g. paddle.io.IterableDataset
|
||||
|
||||
|
||||
class SequenceSampler(Sampler):
|
||||
"""
|
||||
Iterate samples sequentially, yield :code:`0, 1, 2, ..., len(data_source) -1`
|
||||
generally,
|
||||
|
||||
Args:
|
||||
data_source(Dataset): dataset to sample, this could be an
|
||||
instance of :code:`paddle.io.Dataset` other Python
|
||||
object which implemented :code:`__len__`.
|
||||
|
||||
Returns:
|
||||
Sampler: a Sampler yield sample index sequentially
|
||||
|
||||
Examples:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from paddle.io import Dataset, SequenceSampler
|
||||
|
||||
class RandomDataset(Dataset):
|
||||
def __init__(self, num_samples):
|
||||
self.num_samples = num_samples
|
||||
|
||||
def __getitem__(self, idx):
|
||||
image = np.random.random([784]).astype('float32')
|
||||
label = np.random.randint(0, 9, (1, )).astype('int64')
|
||||
return image, label
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
sampler = SequenceSampler(data_source=RandomDataset(100))
|
||||
|
||||
for index in sampler:
|
||||
print(index)
|
||||
|
||||
see `paddle.io.Sampler`
|
||||
"""
|
||||
|
||||
def __init__(self, data_source):
|
||||
self.data_source = data_source
|
||||
|
||||
def __iter__(self):
|
||||
return iter(range(len(self.data_source)))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_source)
|
||||
|
||||
|
||||
class RandomSampler(Sampler):
|
||||
"""
|
||||
Iterate samples randomly, yield shuffled indices, if :attr:`replacement=False`,
|
||||
yield shuffled indices of the whole data souce, if :attr:`replacement=True`,
|
||||
:attr:`num_samples` can set to specify the sample number to draw.
|
||||
|
||||
Args:
|
||||
data_source(Dataset): dataset to sample, this could be an
|
||||
instance of :code:`paddle.io.Dataset` other Python
|
||||
object which implemented :code:`__len__`.
|
||||
replacement(bool): If False, sample the whole dataset, If False,
|
||||
set :attr:`num_samples` for how many sample to draw. Default False.
|
||||
num_samples(int): set sample number to draw if :attr:`replacement`
|
||||
is True. Default None.
|
||||
generator(Generator): specify a generator to sample the data source. Default None
|
||||
|
||||
Returns:
|
||||
Sampler: a Sampler yield sample index randomly
|
||||
|
||||
Examples:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from paddle.io import Dataset, RandomSampler
|
||||
|
||||
class RandomDataset(Dataset):
|
||||
def __init__(self, num_samples):
|
||||
self.num_samples = num_samples
|
||||
|
||||
def __getitem__(self, idx):
|
||||
image = np.random.random([784]).astype('float32')
|
||||
label = np.random.randint(0, 9, (1, )).astype('int64')
|
||||
return image, label
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
||||
|
||||
sampler = RandomSampler(data_souce=RandomDataset(100))
|
||||
|
||||
for index in sampler:
|
||||
print(index)
|
||||
|
||||
see `paddle.io.Sampler`
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
data_source,
|
||||
replacement=False,
|
||||
num_samples=None,
|
||||
generator=None):
|
||||
self.data_source = data_source
|
||||
self.replacement = replacement
|
||||
self._num_samples = num_samples
|
||||
self.generator = generator
|
||||
|
||||
if not isinstance(self.replacement, bool):
|
||||
raise TypeError("expect boolean value for replacement, but got "
|
||||
"replacement={}".format(self.replacement))
|
||||
|
||||
if self._num_samples is not None and not replacement:
|
||||
raise ValueError(
|
||||
"num_samples should not be specified while replacement is False")
|
||||
|
||||
if not isinstance(self.num_samples, int) or self.num_samples <= 0:
|
||||
raise ValueError("num_samples should be a positive integer, "
|
||||
"but got num_samples={}".format(self.num_samples))
|
||||
|
||||
@property
|
||||
def num_samples(self):
|
||||
if self._num_samples is None:
|
||||
return len(self.data_source)
|
||||
return self._num_samples
|
||||
|
||||
def __iter__(self):
|
||||
n = len(self.data_source)
|
||||
if self.generator:
|
||||
for index in self.generator:
|
||||
yield index
|
||||
else:
|
||||
if self.replacement:
|
||||
for index in np.random.choice(
|
||||
np.arange(n), self.num_samples, replace=True).tolist():
|
||||
yield index
|
||||
else:
|
||||
for index in np.random.choice(
|
||||
np.arange(n), n, replace=False).tolist():
|
||||
yield index
|
||||
|
||||
def __len__(self):
|
||||
return self.num_samples
|
Loading…
Reference in new issue