MKL-DNN: Add test for conv bias fuse pass (#15824)
* MKL-DNN: Add test for conv bias fuse pass test=develop * Remove const cast from Conv Bias Pass Test * Add conv with bias test case for conv+bias fuse ut test=developrevert-15774-anakin_subgraph_engine
parent
5d132ecf83
commit
c4faf36e7a
@ -0,0 +1,151 @@
|
||||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/framework/ir/mkldnn/conv_bias_mkldnn_fuse_pass.h"
|
||||
#include "paddle/fluid/framework/naive_executor.h"
|
||||
#include "paddle/fluid/platform/place.h"
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "paddle/fluid/framework/op_proto_maker.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace ir {
|
||||
|
||||
void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
|
||||
const std::vector<std::string>& inputs,
|
||||
const std::vector<std::string>& outputs) {
|
||||
auto* op = prog->MutableBlock(0)->AppendOp();
|
||||
op->SetType(type);
|
||||
if (type == "conv2d") {
|
||||
op->SetAttr("use_mkldnn", true);
|
||||
op->SetAttr("name", name);
|
||||
op->SetInput("Input", {inputs[0]});
|
||||
op->SetInput("Filter", {inputs[1]});
|
||||
if (inputs.size() > 2)
|
||||
op->SetInput("Bias", {inputs[2]});
|
||||
else
|
||||
op->SetInput("Bias", {});
|
||||
} else if (type == "elementwise_add") {
|
||||
op->SetAttr("use_mkldnn", true);
|
||||
op->SetInput("X", {inputs[0]});
|
||||
op->SetInput("Y", {inputs[1]});
|
||||
}
|
||||
op->SetOutput("Out", outputs);
|
||||
op->SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
|
||||
static_cast<int>(OpRole::kForward));
|
||||
}
|
||||
|
||||
// (c, weights)->conv->f
|
||||
// (f)->elementwise_add->g
|
||||
ProgramDesc BuildProgramDesc(bool convWithExistingBias) {
|
||||
ProgramDesc prog;
|
||||
std::vector<std::string> nodes{"c", "weights", "f", "eltwise_bias", "g"};
|
||||
if (convWithExistingBias) nodes.push_back("conv_bias");
|
||||
for (auto& v : nodes) {
|
||||
auto* var = prog.MutableBlock(0)->Var(v);
|
||||
var->SetType(proto::VarType::LOD_TENSOR);
|
||||
if (v == "weights" || v == "conv_bias" || v == "eltwise_bias") {
|
||||
var->SetPersistable(true);
|
||||
}
|
||||
}
|
||||
|
||||
// conv+bias, both with MKL-DNN
|
||||
if (convWithExistingBias) {
|
||||
SetOp(&prog, "conv2d", "conv",
|
||||
std::vector<std::string>({"c", "weights", "conv_bias"}),
|
||||
std::vector<std::string>({"f"}));
|
||||
} else {
|
||||
SetOp(&prog, "conv2d", "conv", std::vector<std::string>({"c", "weights"}),
|
||||
std::vector<std::string>({"f"}));
|
||||
}
|
||||
SetOp(&prog, "elementwise_add", "eltwise",
|
||||
std::vector<std::string>({"f", "eltwise_bias"}),
|
||||
std::vector<std::string>({"g"}));
|
||||
|
||||
return prog;
|
||||
}
|
||||
|
||||
void InitTensorHolder(Scope* scope, const paddle::platform::Place& place,
|
||||
const char* var_name) {
|
||||
auto x = scope->Var(var_name);
|
||||
auto tensor = x->GetMutable<LoDTensor>();
|
||||
tensor->mutable_data(place, proto::VarType::FP32,
|
||||
::paddle::memory::Allocator::kDefault, 1);
|
||||
}
|
||||
|
||||
void MainTest(bool convWithExistingBias) {
|
||||
auto prog = BuildProgramDesc(convWithExistingBias);
|
||||
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
|
||||
auto place = paddle::platform::CPUPlace();
|
||||
NaiveExecutor exe{place};
|
||||
Scope scope;
|
||||
// Init scope, as it is used in pass
|
||||
exe.CreateVariables(prog, 0, true, &scope);
|
||||
if (convWithExistingBias) {
|
||||
InitTensorHolder(&scope, place, "conv_bias");
|
||||
InitTensorHolder(&scope, place, "eltwise_bias");
|
||||
}
|
||||
graph->Set(kParamScopeAttr, new framework::Scope*(&scope));
|
||||
|
||||
auto pass = PassRegistry::Instance().Get("conv_bias_mkldnn_fuse_pass");
|
||||
|
||||
int original_nodes_num = graph->Nodes().size();
|
||||
|
||||
graph = pass->Apply(std::move(graph));
|
||||
|
||||
int current_nodes_num = graph->Nodes().size();
|
||||
|
||||
// Remove 3 Nodes: Conv, Bias, conv_out
|
||||
// Add 1 Node: ConvBias
|
||||
EXPECT_EQ(original_nodes_num - 2, current_nodes_num);
|
||||
|
||||
// Assert conv_bias op in newly generated graph
|
||||
int conv_bias_count = 0;
|
||||
|
||||
for (auto* node : graph->Nodes()) {
|
||||
if (node->IsOp() && node->Op()->Type() == "conv2d") {
|
||||
auto* op = node->Op();
|
||||
ASSERT_TRUE(op->HasAttr("use_mkldnn"));
|
||||
EXPECT_TRUE(boost::get<bool>(op->GetAttr("use_mkldnn")));
|
||||
// check if "conv" convolution is fused
|
||||
auto op_name = boost::get<std::string>(op->GetAttr("name"));
|
||||
if (op_name == "conv") {
|
||||
auto input_names = op->InputNames();
|
||||
ASSERT_TRUE(std::find(input_names.begin(), input_names.end(), "Bias") !=
|
||||
input_names.end());
|
||||
auto bias = boost::get<std::vector<std::string>>(op->Input("Bias"));
|
||||
if (bias.size()) {
|
||||
++conv_bias_count;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
EXPECT_EQ(conv_bias_count, 1);
|
||||
}
|
||||
|
||||
TEST(ConvBiasFusePass, bias_free_conv) { MainTest(false); }
|
||||
|
||||
TEST(ConvBiasFusePass, conv_with_existing_bias) { MainTest(true); }
|
||||
|
||||
TEST(ConvBiasFusePass, conv3d) {
|
||||
Conv3DBiasFusePass pass;
|
||||
ASSERT_TRUE(pass.is_conv3d());
|
||||
}
|
||||
|
||||
} // namespace ir
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
||||
|
||||
USE_PASS(conv_bias_mkldnn_fuse_pass);
|
Loading…
Reference in new issue