Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into executor-design
After Width: | Height: | Size: 57 KiB |
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 56 KiB |
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 32 KiB After Width: | Height: | Size: 30 KiB |
@ -0,0 +1,105 @@
|
||||
## Optimizer Design
|
||||
|
||||
### The Problem
|
||||
|
||||
A PaddlePaddle program, or a block, is a sequence of operators operating variables. A training program needs to do three kinds of works:
|
||||
|
||||
1. the forward pass, which computes intermediate results and the cost(s),
|
||||
1. the backward pass, which derives gradients from intermediate results and costs, and
|
||||
1. the optimization pass, which update model parameters to optimize the cost(s).
|
||||
|
||||
These works rely on three kinds of operators:
|
||||
|
||||
1. forward operators,
|
||||
1. gradient operators, and
|
||||
1. optimization operators.
|
||||
|
||||
It's true that users should be able to create all these operators manually by calling some low-level API, but it would be much more convenient if they could only describe the forward pass and let PaddlePaddle create the backward and optimization operators automatically.
|
||||
|
||||
In this design, we propose a high-level API that automatically derives the optimisation pass and operators from the forward pass.
|
||||
|
||||
|
||||
### High-level Python API to describe the training process
|
||||
|
||||
1. User write code to describe the network:
|
||||
|
||||
```python
|
||||
images = layer.data("images")
|
||||
labels = layer.data("labels")
|
||||
w1 = pd.var("w1")
|
||||
b1 = pd.var("b1")
|
||||
hidden = layer.fc(images, w=w1, b=b1)
|
||||
cost = layer.mse(hidden, labels)
|
||||
```
|
||||
|
||||
The above code snippet will create forward operators in [Block](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md).
|
||||
|
||||
|
||||
2. Users create a certain kind of Optimizer with some argument.
|
||||
|
||||
```python
|
||||
optimizer = AdagradOptimizer(learing_rate=0.001)
|
||||
```
|
||||
|
||||
3. Users use the optimizer to `minimize` a certain `cost` through updating parameters in parameter_list.
|
||||
|
||||
```python
|
||||
opt_op_list = optimizer.minimize(cost, parameter_list=[w1, b1])
|
||||
```
|
||||
The above code snippet will create gradient and optimization operators in Block. The return value of `minimize()` is list of optimization operators that will be run by session.
|
||||
|
||||
4. Users use Session/Executor to run this opt_op_list as target to do training.
|
||||
|
||||
```python
|
||||
sess.run(target= opt_op_list, ...)
|
||||
```
|
||||
|
||||
#### Optimizer Python interface:
|
||||
|
||||
```python
|
||||
class Optimizer(object):
|
||||
"""Optimizer Base class.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def create_backward_pass(self, loss, parameter_list=None):
|
||||
"""
|
||||
create and add gradient Operators in BlockDesc to Compute gradients of `loss`
|
||||
for parameters in parameter_list
|
||||
|
||||
Args:
|
||||
loss: an variable generated by cost function.
|
||||
parameter_list: parameters that need to compute gradient and update to optimize the lost.
|
||||
|
||||
Returns:
|
||||
list of (parameters, gradients) pair.
|
||||
"""
|
||||
return None
|
||||
|
||||
def create_optimization_pass(self, parameters_and_grads):
|
||||
"""Add optimization operators to update gradients to variables.
|
||||
|
||||
Args:
|
||||
parameters_and_grads: a list of (variable, gradient) pair to update.
|
||||
|
||||
Returns:
|
||||
optmization_op_list: a list of optimization operator that will update parameter using gradient.
|
||||
"""
|
||||
return None
|
||||
|
||||
def minimize(self, loss, parameter_list):
|
||||
"""Add operations to minimize `loss` by updating `parameter_list`.
|
||||
|
||||
This method combines interface `create_backward_pass()` and
|
||||
`create_optimization_pass()` into one.
|
||||
"""
|
||||
params_grads = self.create_backward_pass(loss, parameter_list)
|
||||
update_ops = self.create_optimization_pass(params_grads)
|
||||
return update_ops
|
||||
|
||||
```
|
||||
|
||||
Users can inherit the Optimizer above to create their own Optimizer with some special logic, such as AdagradOptimizer.
|
@ -0,0 +1,74 @@
|
||||
# Design Doc: Selected Rows
|
||||
|
||||
`SelectedRows` is a kind of sparse tensor data type, which is designed to support `embedding` operators. The gradient of embedding table is a sparse tensor. Only a few rows are non-zero values in that tensor. It is straightforward to represent the sparse tensor by the following sparse tensor data structure:
|
||||
|
||||
```cpp
|
||||
class SelectedRows {
|
||||
private:
|
||||
vector<int> rows_;
|
||||
Tensor value_;
|
||||
int height_;
|
||||
};
|
||||
```
|
||||
|
||||
The field `height_` shows the first dimension of `SelectedRows`. The `rows` are the indices of which rows of `SelectedRows` are non-zeros. The `value_` field is an N-dim tensor and shape is `[rows.size() /* NUM_ROWS */, ...]`, which supplies values for each row. The dimension of `SelectedRows` satisfies `[height_] + value_.shape[1:]`.
|
||||
|
||||
Suppose that a SelectedRows-typed variable `x` has many rows, but only two of them have values -- row 73 is `[1, 2]` and row 84 is `[3, 4]`, the `SelectedRows` representation would be:
|
||||
|
||||
```
|
||||
x = SelectedRow {
|
||||
rows = [73, 84],
|
||||
value = [[1, 2], [3,4]]
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## SelectedRows in Protobuf
|
||||
|
||||
`SelectedRows` is a kind of `Variable`. `VarDesc` in protobuf should describe the `SelectedRows` information. Only the tensor dimension of a `SelectedRows` will be described in compile-time since the `rows_` and `value_` are related to training data.
|
||||
So we use `TensorDesc` to unify `data_type` and `dims`. A LodTensorDesc contains a `TensorDesc` and `lod_level`. The description of `SelectedRows` is a Tensor description.
|
||||
|
||||
```proto
|
||||
message TensorDesc {
|
||||
required DataType data_type = 1;
|
||||
repeated int64 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
|
||||
}
|
||||
|
||||
message LodTensorDesc {
|
||||
required TensorDesc tensor = 1;
|
||||
optional int lod_level = 2;
|
||||
}
|
||||
|
||||
message VarDesc {
|
||||
required string name = 1;
|
||||
enum VarType {
|
||||
LOD_TENSOR = 0;
|
||||
SELECTED_ROWS = 1;
|
||||
}
|
||||
required VarType type = 2;
|
||||
optional LodTensorDesc lod_desc = 3;
|
||||
optional TensorDesc selected_rows_desc = 4;
|
||||
optional bool persistable = 5 [ default = false ];
|
||||
}
|
||||
```
|
||||
|
||||
## InferShape for Selected Rows
|
||||
|
||||
Just like `LoD` information, `InferShape` method will inference output tensor type as well. The operator should decide whether its output is a `SelectedRows` or `Dense` tensor.
|
||||
|
||||
For example, the gradient operator of `TableLookup` will always generate `SelectedRows`. Its `InferShape` method should be like following
|
||||
|
||||
```cpp
|
||||
void TableLookupGrad::InferShape(context) {
|
||||
...
|
||||
context.SetDataType("Embedding.Grad", kSelectedRows);
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Sparse Operators
|
||||
|
||||
There are several operators should be written to support `SelectedRows`. They are:
|
||||
|
||||
1. Operators which generates `SelectedRows` gradient. e.g. Gradient of `TableLookupOp`.
|
||||
2. Optimize operators which support `SelectedRows` gradient. e.g. `SGD` or `AdaGrad` for `SelectedRows`. However, there should be only one `SGD` operator. `OpWithKernel::Run` should select a suitable kernel for both `dense` tensor or `SelectedRows`.
|