parent
0e4709dadd
commit
c583fd34ac
@ -0,0 +1,34 @@
|
||||
import paddle.fluid as fluid
|
||||
import pslib_pb2 as pslib
|
||||
from .node import DownpourServer
|
||||
from .node import DownpourWorker
|
||||
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
|
||||
|
||||
class DownpourSGD(object):
|
||||
def __init__(self, optimizer=opt, learning_rate=0.001, window=1):
|
||||
# todo(guru4elephant): if optimizer is not None, will warning here
|
||||
self.learning_rate_ = opt.learning_rate
|
||||
self.window_ = window
|
||||
|
||||
def minimize(self, loss, startup_program=None,
|
||||
parameter_list=None, no_grad_set=None,
|
||||
prefetch_slots=None, prefetch_slots_emb=None):
|
||||
params_grads = sorted(append_backward(loss), key=lambda x:x[0].name)
|
||||
table_name = fluid_distributed_lookup_table(loss.block.program)
|
||||
server = DownpourServer()
|
||||
worker = DownpourWorker()
|
||||
server.add_sparse_table(0, learning_rate,
|
||||
prefetch_slots, prefetch_slots_emb)
|
||||
server.add_dense_table(1, learning_rate, params, grads)
|
||||
worker.add_sparse_table(0, learning_rate,
|
||||
prefetch_slots, prefetch_slots_emb)
|
||||
worker.add_dense_table(1, learning_rate, params, grads)
|
||||
|
||||
ps_param = pslib.PSParameter()
|
||||
ps_param.server_param.CopyFrom(server.get_desc())
|
||||
ps_param.worker_param.CopyFrom(worker.get_desc())
|
||||
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
|
||||
|
||||
return [solver_desc, parallel_desc]
|
||||
|
||||
|
@ -0,0 +1,61 @@
|
||||
import paddle.fluid as fluid
|
||||
import pslib_pb2 as pslib
|
||||
|
||||
class Server(object):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
||||
class Worker(object):
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
||||
class DownpourServer(Server):
|
||||
def __init__(self):
|
||||
self.server_ = pslib.ServerParameter().downpour_server_param
|
||||
|
||||
def add_sparse_table(self, table_id, learning_rate,
|
||||
slot_key, slot_value_var, slot_grad_var):
|
||||
table = self.server_.downpour_table_param.add()
|
||||
table.table_id = table_id
|
||||
table.type = PS_SPARSE_TABLE
|
||||
table.accessor.accessor_class = "DownpourFeatureValueAccessor"
|
||||
table.accessor.dense_sgd_param.adam.learning_rate = learning_rate
|
||||
table.accessor.fea_dim = slot_value_var[0].shape[1]
|
||||
|
||||
def add_dense_table(self, table_id, learning_rate,
|
||||
param_var, grad_var):
|
||||
table = self.server_.downpour_table_param.add()
|
||||
table.table_id = table_id
|
||||
table.type = PS_DENSE_TABLE
|
||||
table.accessor.accessor_class = "DownpourDenseValueAccessor"
|
||||
table.accessor.sparse_sgd_param.learning_rate = learning_rate
|
||||
table.accessor.fea_dim = reduce(lambda x, y: x.shape, 1 for x in param_var)
|
||||
|
||||
def get_desc(self):
|
||||
return self.server_
|
||||
|
||||
|
||||
class DownpourWorker(Worker):
|
||||
def __init__(self, window):
|
||||
self.window = window
|
||||
self.worker_ = pslib.WorkerParameter().downpour_worker_param
|
||||
self.worker_.pull_dense_per_batch = window
|
||||
self.worker_.push_dense_per_batch = window
|
||||
|
||||
def add_sparse_table(self, table_id,
|
||||
slot_keys, slot_value_vars, slot_grad_vars):
|
||||
table = self.worker_.sparse_table.add()
|
||||
table.table_id = table_id
|
||||
table.slot.extend(slot_keys)
|
||||
self.worker_.extend([grad.name for grad in slot_grad_vars])
|
||||
|
||||
def add_dense_table(self, table_id, param_vars, grad_vars):
|
||||
table = self.worker_.dense_table.add()
|
||||
table.table_id = table_id
|
||||
table.dense_variable_name.extend([p.name for p in param_vars])
|
||||
table.dense_gradient_variable_name.extend([g.name for g in grad_vars])
|
||||
|
||||
def get_desc(self):
|
||||
return self.worker_
|
Loading…
Reference in new issue