parent
93e4d0cce6
commit
c64cd6feb4
@ -1,23 +0,0 @@
|
||||
86c0815275a9d5eb902e23c6a592f58a img_layers.protostr
|
||||
a5d9259ff1fd7ca23d0ef090052cb1f2 last_first_seq.protostr
|
||||
9c038249ec8ff719753a746cdb04c026 layer_activations.protostr
|
||||
5913f87b39cee3b2701fa158270aca26 projections.protostr
|
||||
7334ba0a4544f0623231330fc51d390d shared_fc.protostr
|
||||
8b8b6bb128a7dfcc937be86145f53e2f shared_lstm.protostr
|
||||
6b39e34beea8dfb782bee9bd3dea9eb5 simple_rnn_layers.protostr
|
||||
4e78f0ded79f6fefb58ca0c104b57c79 test_bi_grumemory.protostr
|
||||
0fc1409600f1a3301da994ab9d28b0bf test_cost_layers.protostr
|
||||
6cd5f28a3416344f20120698470e0a4c test_cost_layers_with_weight.protostr
|
||||
144bc6d3a509de74115fa623741797ed test_expand_layer.protostr
|
||||
2378518bdb71e8c6e888b1842923df58 test_fc.protostr
|
||||
8bb44e1e5072d0c261572307e7672bda test_grumemory_layer.protostr
|
||||
1f3510672dce7a9ed25317fc58579ac7 test_hsigmoid.protostr
|
||||
d350bd91a0dc13e854b1364c3d9339c6 test_lstmemory_layer.protostr
|
||||
5433ed33d4e7414eaf658f2a55946186 test_maxout.protostr
|
||||
251a948ba41c1071afcd3d9cf9c233f7 test_ntm_layers.protostr
|
||||
e6ff04e70aea27c7b06d808cc49c9497 test_print_layer.protostr
|
||||
2a75dd33b640c49a8821c2da6e574577 test_rnn_group.protostr
|
||||
67d6fde3afb54f389d0ce4ff14726fe1 test_sequence_pooling.protostr
|
||||
f586a548ef4350ba1ed47a81859a64cb unused_layers.protostr
|
||||
8122477f4f65244580cec09edc590041 util_layers.protostr
|
||||
dcd76bebb5f9c755f481c26192917818 math_ops.protostr
|
@ -0,0 +1,176 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "image"
|
||||
type: "data"
|
||||
size: 65536
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__conv_0__"
|
||||
type: "exconv"
|
||||
size: 3297856
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "image"
|
||||
input_parameter_name: "___conv_0__.w0"
|
||||
conv_conf {
|
||||
filter_size: 32
|
||||
channels: 1
|
||||
stride: 1
|
||||
padding: 1
|
||||
groups: 1
|
||||
filter_channels: 1
|
||||
output_x: 227
|
||||
img_size: 256
|
||||
caffe_mode: true
|
||||
filter_size_y: 32
|
||||
padding_y: 1
|
||||
stride_y: 1
|
||||
}
|
||||
}
|
||||
bias_parameter_name: "___conv_0__.wbias"
|
||||
num_filters: 64
|
||||
shared_biases: true
|
||||
}
|
||||
layers {
|
||||
name: "__batch_norm_0__"
|
||||
type: "batch_norm"
|
||||
size: 3297856
|
||||
active_type: "relu"
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
input_parameter_name: "___batch_norm_0__.w0"
|
||||
image_conf {
|
||||
channels: 64
|
||||
img_size: 227
|
||||
}
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
input_parameter_name: "___batch_norm_0__.w1"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
input_parameter_name: "___batch_norm_0__.w2"
|
||||
}
|
||||
bias_parameter_name: "___batch_norm_0__.wbias"
|
||||
moving_average_fraction: 0.9
|
||||
}
|
||||
layers {
|
||||
name: "__crmnorm_0__"
|
||||
type: "norm"
|
||||
size: 3297856
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__batch_norm_0__"
|
||||
norm_conf {
|
||||
norm_type: "cmrnorm-projection"
|
||||
channels: 64
|
||||
size: 32
|
||||
scale: 0.0004
|
||||
pow: 0.75
|
||||
output_x: 227
|
||||
img_size: 227
|
||||
blocked: false
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__pool_0__"
|
||||
type: "pool"
|
||||
size: 2458624
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
pool_conf {
|
||||
pool_type: "max-projection"
|
||||
channels: 64
|
||||
size_x: 32
|
||||
stride: 1
|
||||
output_x: 196
|
||||
img_size: 227
|
||||
padding: 0
|
||||
size_y: 32
|
||||
stride_y: 1
|
||||
output_y: 196
|
||||
img_size_y: 227
|
||||
padding_y: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.w0"
|
||||
size: 65536
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0441941738242
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.wbias"
|
||||
size: 64
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 64
|
||||
dims: 1
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___batch_norm_0__.w0"
|
||||
size: 64
|
||||
initial_mean: 1.0
|
||||
initial_std: 0.0
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___batch_norm_0__.w1"
|
||||
size: 64
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 64
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
is_static: true
|
||||
is_shared: true
|
||||
}
|
||||
parameters {
|
||||
name: "___batch_norm_0__.w2"
|
||||
size: 64
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 64
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
is_static: true
|
||||
is_shared: true
|
||||
}
|
||||
parameters {
|
||||
name: "___batch_norm_0__.wbias"
|
||||
size: 64
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 64
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "image"
|
||||
output_layer_names: "__pool_0__"
|
||||
output_layer_names: "__crmnorm_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "image"
|
||||
layer_names: "__conv_0__"
|
||||
layer_names: "__batch_norm_0__"
|
||||
layer_names: "__crmnorm_0__"
|
||||
layer_names: "__pool_0__"
|
||||
input_layer_names: "image"
|
||||
output_layer_names: "__pool_0__"
|
||||
output_layer_names: "__crmnorm_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,69 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 30
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__first_seq_0__"
|
||||
type: "seqlastins"
|
||||
size: 30
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
select_first: true
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__first_seq_1__"
|
||||
type: "seqlastins"
|
||||
size: 30
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
select_first: true
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
layers {
|
||||
name: "__last_seq_0__"
|
||||
type: "seqlastins"
|
||||
size: 30
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__last_seq_1__"
|
||||
type: "seqlastins"
|
||||
size: 30
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__first_seq_0__"
|
||||
output_layer_names: "__first_seq_1__"
|
||||
output_layer_names: "__last_seq_0__"
|
||||
output_layer_names: "__last_seq_1__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__first_seq_0__"
|
||||
layer_names: "__first_seq_1__"
|
||||
layer_names: "__last_seq_0__"
|
||||
layer_names: "__last_seq_1__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__first_seq_0__"
|
||||
output_layer_names: "__first_seq_1__"
|
||||
output_layer_names: "__last_seq_0__"
|
||||
output_layer_names: "__last_seq_1__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,235 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__exp_0__"
|
||||
type: "mixed"
|
||||
size: 100
|
||||
active_type: "exponential"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___exp_0__.w0"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__log_0__"
|
||||
type: "mixed"
|
||||
size: 100
|
||||
active_type: "log"
|
||||
inputs {
|
||||
input_layer_name: "__exp_0__"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___log_0__.w0"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__abs_0__"
|
||||
type: "mixed"
|
||||
size: 100
|
||||
active_type: "abs"
|
||||
inputs {
|
||||
input_layer_name: "__log_0__"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___abs_0__.w0"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__sigmoid_0__"
|
||||
type: "mixed"
|
||||
size: 100
|
||||
active_type: "sigmoid"
|
||||
inputs {
|
||||
input_layer_name: "__abs_0__"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___sigmoid_0__.w0"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__square_0__"
|
||||
type: "mixed"
|
||||
size: 100
|
||||
active_type: "square"
|
||||
inputs {
|
||||
input_layer_name: "__sigmoid_0__"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___square_0__.w0"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__square_1__"
|
||||
type: "mixed"
|
||||
size: 100
|
||||
active_type: "square"
|
||||
inputs {
|
||||
input_layer_name: "__square_0__"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___square_1__.w0"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__slope_intercept_layer_0__"
|
||||
type: "slope_intercept"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__square_1__"
|
||||
}
|
||||
slope: 1.0
|
||||
intercept: 1
|
||||
}
|
||||
layers {
|
||||
name: "__slope_intercept_layer_1__"
|
||||
type: "slope_intercept"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__slope_intercept_layer_0__"
|
||||
}
|
||||
slope: 1.0
|
||||
intercept: 1
|
||||
}
|
||||
layers {
|
||||
name: "__mixed_0__"
|
||||
type: "mixed"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__square_1__"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___mixed_0__.w0"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "__slope_intercept_layer_1__"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___mixed_0__.w1"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__slope_intercept_layer_2__"
|
||||
type: "slope_intercept"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__square_1__"
|
||||
}
|
||||
slope: -1.0
|
||||
intercept: 0.0
|
||||
}
|
||||
layers {
|
||||
name: "__mixed_1__"
|
||||
type: "mixed"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__mixed_0__"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___mixed_1__.w0"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "__slope_intercept_layer_2__"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___mixed_1__.w1"
|
||||
input_size: 100
|
||||
output_size: 100
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__slope_intercept_layer_3__"
|
||||
type: "slope_intercept"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__mixed_1__"
|
||||
}
|
||||
slope: 1.0
|
||||
intercept: 2
|
||||
}
|
||||
layers {
|
||||
name: "__slope_intercept_layer_4__"
|
||||
type: "slope_intercept"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__slope_intercept_layer_3__"
|
||||
}
|
||||
slope: -1.0
|
||||
intercept: 0.0
|
||||
}
|
||||
layers {
|
||||
name: "__slope_intercept_layer_5__"
|
||||
type: "slope_intercept"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__slope_intercept_layer_4__"
|
||||
}
|
||||
slope: 1.0
|
||||
intercept: 2
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__slope_intercept_layer_5__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__exp_0__"
|
||||
layer_names: "__log_0__"
|
||||
layer_names: "__abs_0__"
|
||||
layer_names: "__sigmoid_0__"
|
||||
layer_names: "__square_0__"
|
||||
layer_names: "__square_1__"
|
||||
layer_names: "__slope_intercept_layer_0__"
|
||||
layer_names: "__slope_intercept_layer_1__"
|
||||
layer_names: "__mixed_0__"
|
||||
layer_names: "__slope_intercept_layer_2__"
|
||||
layer_names: "__mixed_1__"
|
||||
layer_names: "__slope_intercept_layer_3__"
|
||||
layer_names: "__slope_intercept_layer_4__"
|
||||
layer_names: "__slope_intercept_layer_5__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__slope_intercept_layer_5__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,125 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "feature_a"
|
||||
type: "data"
|
||||
size: 200
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "feature_b"
|
||||
type: "data"
|
||||
size: 200
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__fc_layer_0__"
|
||||
type: "fc"
|
||||
size: 200
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "feature_a"
|
||||
input_parameter_name: "fc_param"
|
||||
}
|
||||
bias_parameter_name: "bias_param"
|
||||
}
|
||||
layers {
|
||||
name: "__fc_layer_1__"
|
||||
type: "fc"
|
||||
size: 200
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "feature_b"
|
||||
input_parameter_name: "fc_param"
|
||||
}
|
||||
bias_parameter_name: "bias_param"
|
||||
}
|
||||
layers {
|
||||
name: "__fc_layer_2__"
|
||||
type: "fc"
|
||||
size: 10
|
||||
active_type: "softmax"
|
||||
inputs {
|
||||
input_layer_name: "__fc_layer_0__"
|
||||
input_parameter_name: "softmax_param"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "__fc_layer_1__"
|
||||
input_parameter_name: "softmax_param"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "label"
|
||||
type: "data"
|
||||
size: 10
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__cost_0__"
|
||||
type: "multi-class-cross-entropy"
|
||||
size: 1
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__fc_layer_2__"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "label"
|
||||
}
|
||||
coeff: 1.0
|
||||
}
|
||||
parameters {
|
||||
name: "fc_param"
|
||||
size: 40000
|
||||
initial_mean: 0.0
|
||||
initial_std: 1.0
|
||||
dims: 200
|
||||
dims: 200
|
||||
initial_strategy: 1
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "bias_param"
|
||||
size: 200
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 200
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "softmax_param"
|
||||
size: 2000
|
||||
initial_mean: 0.0
|
||||
initial_std: 1.0
|
||||
dims: 200
|
||||
dims: 10
|
||||
initial_strategy: 1
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "feature_a"
|
||||
input_layer_names: "feature_b"
|
||||
input_layer_names: "label"
|
||||
output_layer_names: "__cost_0__"
|
||||
evaluators {
|
||||
name: "classification_error_evaluator"
|
||||
type: "classification_error"
|
||||
input_layers: "__fc_layer_2__"
|
||||
input_layers: "label"
|
||||
}
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "feature_a"
|
||||
layer_names: "feature_b"
|
||||
layer_names: "__fc_layer_0__"
|
||||
layer_names: "__fc_layer_1__"
|
||||
layer_names: "__fc_layer_2__"
|
||||
layer_names: "label"
|
||||
layer_names: "__cost_0__"
|
||||
input_layer_names: "feature_a"
|
||||
input_layer_names: "feature_b"
|
||||
input_layer_names: "label"
|
||||
output_layer_names: "__cost_0__"
|
||||
evaluator_names: "classification_error_evaluator"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,152 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 120
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__bidirectional_gru_0___fw_transform"
|
||||
type: "mixed"
|
||||
size: 120
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___bidirectional_gru_0___fw_transform.w0"
|
||||
proj_conf {
|
||||
type: "fc"
|
||||
name: "___bidirectional_gru_0___fw_transform.w0"
|
||||
input_size: 120
|
||||
output_size: 120
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__bidirectional_gru_0___fw"
|
||||
type: "gated_recurrent"
|
||||
size: 40
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "__bidirectional_gru_0___fw_transform"
|
||||
input_parameter_name: "___bidirectional_gru_0___fw.w0"
|
||||
}
|
||||
bias_parameter_name: "___bidirectional_gru_0___fw.wbias"
|
||||
reversed: false
|
||||
active_gate_type: "sigmoid"
|
||||
}
|
||||
layers {
|
||||
name: "__bidirectional_gru_0___bw_transform"
|
||||
type: "mixed"
|
||||
size: 120
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___bidirectional_gru_0___bw_transform.w0"
|
||||
proj_conf {
|
||||
type: "fc"
|
||||
name: "___bidirectional_gru_0___bw_transform.w0"
|
||||
input_size: 120
|
||||
output_size: 120
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__bidirectional_gru_0___bw"
|
||||
type: "gated_recurrent"
|
||||
size: 40
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "__bidirectional_gru_0___bw_transform"
|
||||
input_parameter_name: "___bidirectional_gru_0___bw.w0"
|
||||
}
|
||||
bias_parameter_name: "___bidirectional_gru_0___bw.wbias"
|
||||
reversed: true
|
||||
active_gate_type: "sigmoid"
|
||||
}
|
||||
layers {
|
||||
name: "__bidirectional_gru_0__"
|
||||
type: "concat"
|
||||
size: 80
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__bidirectional_gru_0___fw"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "__bidirectional_gru_0___bw"
|
||||
}
|
||||
}
|
||||
parameters {
|
||||
name: "___bidirectional_gru_0___fw_transform.w0"
|
||||
size: 14400
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0912870929175
|
||||
dims: 120
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___bidirectional_gru_0___fw.w0"
|
||||
size: 4800
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.158113883008
|
||||
dims: 40
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___bidirectional_gru_0___fw.wbias"
|
||||
size: 120
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___bidirectional_gru_0___bw_transform.w0"
|
||||
size: 14400
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0912870929175
|
||||
dims: 120
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___bidirectional_gru_0___bw.w0"
|
||||
size: 4800
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.158113883008
|
||||
dims: 40
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___bidirectional_gru_0___bw.wbias"
|
||||
size: 120
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__bidirectional_gru_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__bidirectional_gru_0___fw_transform"
|
||||
layer_names: "__bidirectional_gru_0___fw"
|
||||
layer_names: "__bidirectional_gru_0___bw_transform"
|
||||
layer_names: "__bidirectional_gru_0___bw"
|
||||
layer_names: "__bidirectional_gru_0__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__bidirectional_gru_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,111 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "input"
|
||||
type: "data"
|
||||
size: 300
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "label"
|
||||
type: "data"
|
||||
size: 1
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "weight"
|
||||
type: "data"
|
||||
size: 1
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__fc_layer_0__"
|
||||
type: "fc"
|
||||
size: 10
|
||||
active_type: "softmax"
|
||||
inputs {
|
||||
input_layer_name: "input"
|
||||
input_parameter_name: "___fc_layer_0__.w0"
|
||||
}
|
||||
bias_parameter_name: "___fc_layer_0__.wbias"
|
||||
}
|
||||
layers {
|
||||
name: "__cost_0__"
|
||||
type: "multi-class-cross-entropy"
|
||||
size: 1
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__fc_layer_0__"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "label"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "weight"
|
||||
}
|
||||
coeff: 1.0
|
||||
}
|
||||
layers {
|
||||
name: "__regression_cost_0__"
|
||||
type: "square_error"
|
||||
size: 1
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__fc_layer_0__"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "label"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "weight"
|
||||
}
|
||||
coeff: 1.0
|
||||
}
|
||||
parameters {
|
||||
name: "___fc_layer_0__.w0"
|
||||
size: 3000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.057735026919
|
||||
dims: 300
|
||||
dims: 10
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___fc_layer_0__.wbias"
|
||||
size: 10
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 10
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "input"
|
||||
input_layer_names: "label"
|
||||
input_layer_names: "weight"
|
||||
output_layer_names: "__cost_0__"
|
||||
output_layer_names: "__regression_cost_0__"
|
||||
evaluators {
|
||||
name: "classification_error_evaluator"
|
||||
type: "classification_error"
|
||||
input_layers: "__fc_layer_0__"
|
||||
input_layers: "label"
|
||||
input_layers: "weight"
|
||||
}
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "input"
|
||||
layer_names: "label"
|
||||
layer_names: "weight"
|
||||
layer_names: "__fc_layer_0__"
|
||||
layer_names: "__cost_0__"
|
||||
layer_names: "__regression_cost_0__"
|
||||
input_layer_names: "input"
|
||||
input_layer_names: "label"
|
||||
input_layer_names: "weight"
|
||||
output_layer_names: "__cost_0__"
|
||||
output_layer_names: "__regression_cost_0__"
|
||||
evaluator_names: "classification_error_evaluator"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,56 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 30
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "data_seq"
|
||||
type: "data"
|
||||
size: 30
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__expand_layer_0__"
|
||||
type: "expand"
|
||||
size: 30
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "data_seq"
|
||||
}
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__expand_layer_1__"
|
||||
type: "expand"
|
||||
size: 30
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "data_seq"
|
||||
}
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "data_seq"
|
||||
output_layer_names: "__expand_layer_0__"
|
||||
output_layer_names: "__expand_layer_1__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "data_seq"
|
||||
layer_names: "__expand_layer_0__"
|
||||
layer_names: "__expand_layer_1__"
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "data_seq"
|
||||
output_layer_names: "__expand_layer_0__"
|
||||
output_layer_names: "__expand_layer_1__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,98 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__trans_layer_0__"
|
||||
type: "trans"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__fc_layer_0__"
|
||||
type: "fc"
|
||||
size: 100
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "__trans_layer_0__"
|
||||
input_parameter_name: "___fc_layer_0__.w0"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "mask"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__selective_fc_layer_0__"
|
||||
type: "selective_fc"
|
||||
size: 100
|
||||
active_type: "sigmoid"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___selective_fc_layer_0__.w0"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "mask"
|
||||
}
|
||||
bias_parameter_name: "___selective_fc_layer_0__.wbias"
|
||||
selective_fc_pass_generation: false
|
||||
has_selected_colums: true
|
||||
selective_fc_full_mul_ratio: 0.02
|
||||
}
|
||||
parameters {
|
||||
name: "___fc_layer_0__.w0"
|
||||
size: 10000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.1
|
||||
dims: 100
|
||||
dims: 100
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___selective_fc_layer_0__.w0"
|
||||
size: 10000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.1
|
||||
dims: 100
|
||||
dims: 100
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
is_sparse: false
|
||||
}
|
||||
parameters {
|
||||
name: "___selective_fc_layer_0__.wbias"
|
||||
size: 100
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 100
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "mask"
|
||||
output_layer_names: "__fc_layer_0__"
|
||||
output_layer_names: "__selective_fc_layer_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__trans_layer_0__"
|
||||
layer_names: "__fc_layer_0__"
|
||||
layer_names: "mask"
|
||||
layer_names: "__selective_fc_layer_0__"
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "mask"
|
||||
output_layer_names: "__fc_layer_0__"
|
||||
output_layer_names: "__selective_fc_layer_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,51 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 120
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__gru_0__"
|
||||
type: "gated_recurrent"
|
||||
size: 40
|
||||
active_type: "sigmoid"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___gru_0__.w0"
|
||||
}
|
||||
bias_parameter_name: "___gru_0__.wbias"
|
||||
reversed: true
|
||||
active_gate_type: "tanh"
|
||||
}
|
||||
parameters {
|
||||
name: "___gru_0__.w0"
|
||||
size: 4800
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.158113883008
|
||||
dims: 40
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___gru_0__.wbias"
|
||||
size: 120
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__gru_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__gru_0__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__gru_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,62 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "label"
|
||||
type: "data"
|
||||
size: 10
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__hsigmoid_0__"
|
||||
type: "hsigmoid"
|
||||
size: 1
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___hsigmoid_0__.w0"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "label"
|
||||
}
|
||||
bias_parameter_name: "___hsigmoid_0__.wbias"
|
||||
num_classes: 10
|
||||
}
|
||||
parameters {
|
||||
name: "___hsigmoid_0__.w0"
|
||||
size: 900
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.333333333333
|
||||
dims: 9
|
||||
dims: 100
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___hsigmoid_0__.wbias"
|
||||
size: 9
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 9
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "label"
|
||||
output_layer_names: "__hsigmoid_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "label"
|
||||
layer_names: "__hsigmoid_0__"
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "label"
|
||||
output_layer_names: "__hsigmoid_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,53 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 128
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__lstmemory_0__"
|
||||
type: "lstmemory"
|
||||
size: 32
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___lstmemory_0__.w0"
|
||||
}
|
||||
bias_parameter_name: "___lstmemory_0__.wbias"
|
||||
reversed: true
|
||||
active_gate_type: "tanh"
|
||||
active_state_type: "tanh"
|
||||
}
|
||||
parameters {
|
||||
name: "___lstmemory_0__.w0"
|
||||
size: 4096
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.176776695297
|
||||
dims: 32
|
||||
dims: 32
|
||||
dims: 4
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___lstmemory_0__.wbias"
|
||||
size: 224
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 224
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__lstmemory_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__lstmemory_0__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__lstmemory_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,209 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 2304
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__conv_0__"
|
||||
type: "exconv"
|
||||
size: 36864
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___conv_0__.w0"
|
||||
conv_conf {
|
||||
filter_size: 3
|
||||
channels: 1
|
||||
stride: 1
|
||||
padding: 1
|
||||
groups: 1
|
||||
filter_channels: 1
|
||||
output_x: 48
|
||||
img_size: 48
|
||||
caffe_mode: true
|
||||
filter_size_y: 3
|
||||
padding_y: 1
|
||||
stride_y: 1
|
||||
}
|
||||
}
|
||||
bias_parameter_name: "___conv_0__.wbias"
|
||||
num_filters: 16
|
||||
shared_biases: true
|
||||
}
|
||||
layers {
|
||||
name: "__maxout_layer_0__"
|
||||
type: "maxout"
|
||||
size: 18432
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
maxout_conf {
|
||||
channels: 16
|
||||
groups: 2
|
||||
img_size_x: 0
|
||||
img_size_y: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__pool_0__"
|
||||
type: "pool"
|
||||
size: 4608
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__maxout_layer_0__"
|
||||
pool_conf {
|
||||
pool_type: "max-projection"
|
||||
channels: 8
|
||||
size_x: 2
|
||||
stride: 2
|
||||
output_x: 24
|
||||
img_size: 48
|
||||
padding: 0
|
||||
size_y: 2
|
||||
stride_y: 2
|
||||
output_y: 24
|
||||
img_size_y: 48
|
||||
padding_y: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__conv_1__"
|
||||
type: "exconv"
|
||||
size: 18432
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__pool_0__"
|
||||
input_parameter_name: "___conv_1__.w0"
|
||||
conv_conf {
|
||||
filter_size: 3
|
||||
channels: 32
|
||||
stride: 1
|
||||
padding: 1
|
||||
groups: 1
|
||||
filter_channels: 32
|
||||
output_x: 12
|
||||
img_size: 12
|
||||
caffe_mode: true
|
||||
filter_size_y: 3
|
||||
padding_y: 1
|
||||
stride_y: 1
|
||||
}
|
||||
}
|
||||
bias_parameter_name: "___conv_1__.wbias"
|
||||
num_filters: 128
|
||||
shared_biases: true
|
||||
}
|
||||
layers {
|
||||
name: "__maxout_layer_1__"
|
||||
type: "maxout"
|
||||
size: 9216
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
maxout_conf {
|
||||
channels: 128
|
||||
groups: 4
|
||||
img_size_x: 0
|
||||
img_size_y: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__block_expand_layer_0__"
|
||||
type: "blockexpand"
|
||||
size: 192
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__maxout_layer_0__"
|
||||
block_expand_conf {
|
||||
channels: 32
|
||||
stride_x: 1
|
||||
stride_y: 1
|
||||
padding_x: 0
|
||||
padding_y: 0
|
||||
block_x: 1
|
||||
block_y: 6
|
||||
output_x: 0
|
||||
output_y: 0
|
||||
img_size_x: 0
|
||||
img_size_y: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__fc_layer_0__"
|
||||
type: "fc"
|
||||
size: 384
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "__block_expand_layer_0__"
|
||||
input_parameter_name: "___fc_layer_0__.w0"
|
||||
}
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.w0"
|
||||
size: 144
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.471404520791
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.wbias"
|
||||
size: 16
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 16
|
||||
dims: 1
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_1__.w0"
|
||||
size: 36864
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0833333333333
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_1__.wbias"
|
||||
size: 128
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 128
|
||||
dims: 1
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___fc_layer_0__.w0"
|
||||
size: 73728
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0721687836487
|
||||
dims: 192
|
||||
dims: 384
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__fc_layer_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__conv_0__"
|
||||
layer_names: "__maxout_layer_0__"
|
||||
layer_names: "__pool_0__"
|
||||
layer_names: "__conv_1__"
|
||||
layer_names: "__maxout_layer_1__"
|
||||
layer_names: "__block_expand_layer_0__"
|
||||
layer_names: "__fc_layer_0__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__fc_layer_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,225 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "w"
|
||||
type: "data"
|
||||
size: 1
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "a"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "b"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "c"
|
||||
type: "data"
|
||||
size: 200
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "d"
|
||||
type: "data"
|
||||
size: 31
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__interpolation_layer_0__"
|
||||
type: "interpolation"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "w"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__power_layer_0__"
|
||||
type: "power"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "w"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__scaling_layer_0__"
|
||||
type: "scaling"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "w"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__cos_sim_0__"
|
||||
type: "cos"
|
||||
size: 1
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
cos_scale: 5
|
||||
}
|
||||
layers {
|
||||
name: "__cos_sim_1__"
|
||||
type: "cos_vm"
|
||||
size: 2
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "c"
|
||||
}
|
||||
cos_scale: 5
|
||||
}
|
||||
layers {
|
||||
name: "__sum_to_one_norm_layer_0__"
|
||||
type: "sum_to_one_norm"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__conv_shift_layer_0__"
|
||||
type: "conv_shift"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "d"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__tensor_layer_0__"
|
||||
type: "tensor"
|
||||
size: 1000
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
input_parameter_name: "___tensor_layer_0__.w0"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
bias_parameter_name: "___tensor_layer_0__.wbias"
|
||||
}
|
||||
layers {
|
||||
name: "__slope_intercept_layer_0__"
|
||||
type: "slope_intercept"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
slope: 0.7
|
||||
intercept: 0.9
|
||||
}
|
||||
layers {
|
||||
name: "__linear_comb_layer_0__"
|
||||
type: "convex_comb"
|
||||
size: 2
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "c"
|
||||
}
|
||||
}
|
||||
parameters {
|
||||
name: "___tensor_layer_0__.w0"
|
||||
size: 10000000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.1
|
||||
dims: 100
|
||||
dims: 100
|
||||
dims: 1000
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___tensor_layer_0__.wbias"
|
||||
size: 1000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 1000
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "w"
|
||||
input_layer_names: "a"
|
||||
input_layer_names: "b"
|
||||
input_layer_names: "c"
|
||||
input_layer_names: "d"
|
||||
output_layer_names: "__interpolation_layer_0__"
|
||||
output_layer_names: "__power_layer_0__"
|
||||
output_layer_names: "__scaling_layer_0__"
|
||||
output_layer_names: "__cos_sim_0__"
|
||||
output_layer_names: "__cos_sim_1__"
|
||||
output_layer_names: "__sum_to_one_norm_layer_0__"
|
||||
output_layer_names: "__conv_shift_layer_0__"
|
||||
output_layer_names: "__tensor_layer_0__"
|
||||
output_layer_names: "__slope_intercept_layer_0__"
|
||||
output_layer_names: "__linear_comb_layer_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "w"
|
||||
layer_names: "a"
|
||||
layer_names: "b"
|
||||
layer_names: "c"
|
||||
layer_names: "d"
|
||||
layer_names: "__interpolation_layer_0__"
|
||||
layer_names: "__power_layer_0__"
|
||||
layer_names: "__scaling_layer_0__"
|
||||
layer_names: "__cos_sim_0__"
|
||||
layer_names: "__cos_sim_1__"
|
||||
layer_names: "__sum_to_one_norm_layer_0__"
|
||||
layer_names: "__conv_shift_layer_0__"
|
||||
layer_names: "__tensor_layer_0__"
|
||||
layer_names: "__slope_intercept_layer_0__"
|
||||
layer_names: "__linear_comb_layer_0__"
|
||||
input_layer_names: "w"
|
||||
input_layer_names: "a"
|
||||
input_layer_names: "b"
|
||||
input_layer_names: "c"
|
||||
input_layer_names: "d"
|
||||
output_layer_names: "__interpolation_layer_0__"
|
||||
output_layer_names: "__power_layer_0__"
|
||||
output_layer_names: "__scaling_layer_0__"
|
||||
output_layer_names: "__cos_sim_0__"
|
||||
output_layer_names: "__cos_sim_1__"
|
||||
output_layer_names: "__sum_to_one_norm_layer_0__"
|
||||
output_layer_names: "__conv_shift_layer_0__"
|
||||
output_layer_names: "__tensor_layer_0__"
|
||||
output_layer_names: "__slope_intercept_layer_0__"
|
||||
output_layer_names: "__linear_comb_layer_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,26 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "input"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__print_0__"
|
||||
type: "print"
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "input"
|
||||
}
|
||||
}
|
||||
input_layer_names: "input"
|
||||
output_layer_names: "input"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "input"
|
||||
layer_names: "__print_0__"
|
||||
input_layer_names: "input"
|
||||
output_layer_names: "input"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,111 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "dat_in"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_0__"
|
||||
type: "max"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_1__"
|
||||
type: "max"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_2__"
|
||||
type: "average"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
average_strategy: "average"
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_3__"
|
||||
type: "average"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
average_strategy: "average"
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_4__"
|
||||
type: "average"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
average_strategy: "sum"
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_5__"
|
||||
type: "average"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
average_strategy: "sum"
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_6__"
|
||||
type: "max"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
output_max_index: true
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
input_layer_names: "dat_in"
|
||||
output_layer_names: "__seq_pooling_0__"
|
||||
output_layer_names: "__seq_pooling_1__"
|
||||
output_layer_names: "__seq_pooling_2__"
|
||||
output_layer_names: "__seq_pooling_3__"
|
||||
output_layer_names: "__seq_pooling_4__"
|
||||
output_layer_names: "__seq_pooling_5__"
|
||||
output_layer_names: "__seq_pooling_6__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "dat_in"
|
||||
layer_names: "__seq_pooling_0__"
|
||||
layer_names: "__seq_pooling_1__"
|
||||
layer_names: "__seq_pooling_2__"
|
||||
layer_names: "__seq_pooling_3__"
|
||||
layer_names: "__seq_pooling_4__"
|
||||
layer_names: "__seq_pooling_5__"
|
||||
layer_names: "__seq_pooling_6__"
|
||||
input_layer_names: "dat_in"
|
||||
output_layer_names: "__seq_pooling_0__"
|
||||
output_layer_names: "__seq_pooling_1__"
|
||||
output_layer_names: "__seq_pooling_2__"
|
||||
output_layer_names: "__seq_pooling_3__"
|
||||
output_layer_names: "__seq_pooling_4__"
|
||||
output_layer_names: "__seq_pooling_5__"
|
||||
output_layer_names: "__seq_pooling_6__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,27 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "probs"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__sampling_id_layer_0__"
|
||||
type: "sampling_id"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "probs"
|
||||
}
|
||||
}
|
||||
input_layer_names: "probs"
|
||||
output_layer_names: "__sampling_id_layer_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "probs"
|
||||
layer_names: "__sampling_id_layer_0__"
|
||||
input_layer_names: "probs"
|
||||
output_layer_names: "__sampling_id_layer_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,81 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "a"
|
||||
type: "data"
|
||||
size: 10
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "b"
|
||||
type: "data"
|
||||
size: 10
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__addto_0__"
|
||||
type: "addto"
|
||||
size: 10
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__concat_0__"
|
||||
type: "concat"
|
||||
size: 20
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__concat_1__"
|
||||
type: "concat2"
|
||||
size: 20
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___concat_1__.w0"
|
||||
input_size: 10
|
||||
output_size: 10
|
||||
}
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___concat_1__.w1"
|
||||
input_size: 10
|
||||
output_size: 10
|
||||
}
|
||||
}
|
||||
}
|
||||
input_layer_names: "a"
|
||||
input_layer_names: "b"
|
||||
output_layer_names: "__addto_0__"
|
||||
output_layer_names: "__concat_0__"
|
||||
output_layer_names: "__concat_1__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "a"
|
||||
layer_names: "b"
|
||||
layer_names: "__addto_0__"
|
||||
layer_names: "__concat_0__"
|
||||
layer_names: "__concat_1__"
|
||||
input_layer_names: "a"
|
||||
input_layer_names: "b"
|
||||
output_layer_names: "__addto_0__"
|
||||
output_layer_names: "__concat_0__"
|
||||
output_layer_names: "__concat_1__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue