Fix train error when test_program.clone is executed after optimizer.minimize (#19397)
* add prune when test_program.clone is executed after optimizer.minimize * add unittest, test=develop * add resnet and transformer test case, test=develop * add regularization for optimizer & program compare function, test=develop * add lstm unittest, test=develop * polish code based on review comment, test=develop * adapt to interface change in framework._prune, test=develop * update API.spec, test=developnew_fix
parent
5f627488db
commit
c78a4781bf
@ -0,0 +1,178 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
|
||||
import contextlib
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from simple_nets import init_data, simple_fc_net, fc_with_batchnorm
|
||||
import seresnext_net
|
||||
from test_parallel_executor_transformer import transformer, get_feed_data_reader
|
||||
from fake_reader import fake_imdb_reader
|
||||
|
||||
|
||||
def lstm_net(use_feed):
|
||||
dict_dim = 5147
|
||||
emb_dim = 128
|
||||
hid_dim = 128
|
||||
hid_dim2 = 96
|
||||
class_dim = 2
|
||||
emb_lr = 30.0
|
||||
data = fluid.layers.data(
|
||||
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||
emb = fluid.layers.embedding(
|
||||
input=data,
|
||||
size=[dict_dim, emb_dim],
|
||||
param_attr=fluid.ParamAttr(learning_rate=emb_lr))
|
||||
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
|
||||
lstm_h, c = fluid.layers.dynamic_lstm(
|
||||
input=fc0, size=hid_dim * 4, is_reverse=False)
|
||||
lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
|
||||
lstm_max_tanh = fluid.layers.tanh(lstm_max)
|
||||
fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
|
||||
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
return avg_cost
|
||||
|
||||
|
||||
class TestProgramPruneBackward(unittest.TestCase):
|
||||
def program_compare(self, program_a, program_b):
|
||||
assert isinstance(
|
||||
program_a, fluid.framework.
|
||||
Program), "The first argument should be fluid.framework.Program."
|
||||
assert isinstance(
|
||||
program_b, fluid.framework.
|
||||
Program), "The second argument should be fluid.framework Program."
|
||||
|
||||
self.assertEqual(len(program_a.blocks), len(program_b.blocks))
|
||||
for idx in range(len(program_a.blocks)):
|
||||
block_a = program_a.blocks[idx]
|
||||
block_b = program_b.blocks[idx]
|
||||
self.assertEqual(len(block_a.ops), len(block_b.ops))
|
||||
self.assertEqual(len(block_a.vars), len(block_b.vars))
|
||||
for op_idx in range(len(block_a.ops)):
|
||||
self.assertEqual(block_a.ops[op_idx].type,
|
||||
block_b.ops[op_idx].type)
|
||||
for var_key in list(block_a.vars.keys()):
|
||||
self.assertTrue(block_b.has_var(var_key))
|
||||
|
||||
def check_prune_correctness(self, method, feed_dict, optimizer):
|
||||
loss = method(use_feed=False)
|
||||
|
||||
main_program = fluid.default_main_program()
|
||||
test_prog_orig = main_program.clone(for_test=True)
|
||||
optimizer().minimize(loss)
|
||||
test_prog_prune = main_program.clone(for_test=True)
|
||||
self.program_compare(test_prog_orig, test_prog_prune)
|
||||
|
||||
place = core.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
loss_data_prune, = exe.run(test_prog_prune,
|
||||
feed=feed_dict,
|
||||
fetch_list=[loss.name])
|
||||
loss_data_orig, = exe.run(test_prog_orig,
|
||||
feed=feed_dict,
|
||||
fetch_list=[loss.name])
|
||||
self.assertEqual(loss_data_orig, loss_data_prune)
|
||||
|
||||
def test_simple_fc_net(self):
|
||||
def optimizer():
|
||||
optimizer = fluid.optimizer.SGD(
|
||||
learning_rate=0.001,
|
||||
regularization=fluid.regularizer.L2Decay(1e-4))
|
||||
return optimizer
|
||||
|
||||
with self.program_scope_guard():
|
||||
img, label = init_data()
|
||||
self.check_prune_correctness(
|
||||
method=simple_fc_net,
|
||||
feed_dict={"image": img,
|
||||
"label": label},
|
||||
optimizer=optimizer)
|
||||
|
||||
def test_batchnorm_fc(self):
|
||||
def optimizer():
|
||||
optimizer = fluid.optimizer.SGD(
|
||||
learning_rate=0.001,
|
||||
regularization=fluid.regularizer.L2Decay(1e-4))
|
||||
return optimizer
|
||||
|
||||
with self.program_scope_guard():
|
||||
img, label = init_data()
|
||||
self.check_prune_correctness(
|
||||
method=fc_with_batchnorm,
|
||||
feed_dict={"image": img,
|
||||
"label": label},
|
||||
optimizer=optimizer)
|
||||
|
||||
def test_seresnet(self):
|
||||
with self.program_scope_guard():
|
||||
self.check_prune_correctness(
|
||||
method=seresnext_net.model,
|
||||
feed_dict=seresnext_net.feed_dict(use_cuda=False),
|
||||
optimizer=seresnext_net.optimizer)
|
||||
|
||||
def test_transformer(self):
|
||||
def optimizer():
|
||||
optimizer = fluid.optimizer.Adam(
|
||||
learning_rate=0.001,
|
||||
regularization=fluid.regularizer.L2Decay(1e-4))
|
||||
return optimizer
|
||||
|
||||
with self.program_scope_guard():
|
||||
# the program argument is used to distinguish Program and CompiledProgram
|
||||
feed_dict = get_feed_data_reader().get_next(
|
||||
fluid.Executor(core.CPUPlace()), fluid.default_main_program())
|
||||
self.check_prune_correctness(
|
||||
method=transformer, feed_dict=feed_dict, optimizer=optimizer)
|
||||
|
||||
def test_lstm(self):
|
||||
def optimizer():
|
||||
optimizer = fluid.optimizer.Adagrad(
|
||||
learning_rate=0.001,
|
||||
regularization=fluid.regularizer.L2Decay(1e-4))
|
||||
return optimizer
|
||||
|
||||
with self.program_scope_guard():
|
||||
word_dict_size = 5147
|
||||
reader = fake_imdb_reader(word_dict_size, 1)
|
||||
data = fluid.layers.data(
|
||||
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||
feeder = fluid.DataFeeder(
|
||||
feed_list=[data, label], place=core.CPUPlace())
|
||||
feed_data = feeder.feed(reader())
|
||||
self.check_prune_correctness(
|
||||
method=lstm_net, feed_dict=feed_data, optimizer=optimizer)
|
||||
|
||||
@contextlib.contextmanager
|
||||
def program_scope_guard(self):
|
||||
prog = fluid.Program()
|
||||
startup_prog = fluid.Program()
|
||||
scope = fluid.core.Scope()
|
||||
with fluid.scope_guard(scope):
|
||||
with fluid.program_guard(prog, startup_prog):
|
||||
yield
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue