parent
8630ba2eb1
commit
c7d3273d63
@ -0,0 +1,203 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import argparse
|
||||
import time
|
||||
import math
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.profiler as profiler
|
||||
from paddle.fluid import core
|
||||
import unittest
|
||||
from multiprocessing import Process
|
||||
import os
|
||||
import signal
|
||||
|
||||
IS_SPARSE = True
|
||||
EMBED_SIZE = 32
|
||||
HIDDEN_SIZE = 256
|
||||
N = 5
|
||||
BATCH_SIZE = 32
|
||||
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
|
||||
|
||||
|
||||
def get_model():
|
||||
def __network__(words):
|
||||
embed_first = fluid.layers.embedding(
|
||||
input=words[0],
|
||||
size=[dict_size, EMBED_SIZE],
|
||||
dtype='float32',
|
||||
is_sparse=IS_SPARSE,
|
||||
param_attr='shared_w')
|
||||
embed_second = fluid.layers.embedding(
|
||||
input=words[1],
|
||||
size=[dict_size, EMBED_SIZE],
|
||||
dtype='float32',
|
||||
is_sparse=IS_SPARSE,
|
||||
param_attr='shared_w')
|
||||
embed_third = fluid.layers.embedding(
|
||||
input=words[2],
|
||||
size=[dict_size, EMBED_SIZE],
|
||||
dtype='float32',
|
||||
is_sparse=IS_SPARSE,
|
||||
param_attr='shared_w')
|
||||
embed_forth = fluid.layers.embedding(
|
||||
input=words[3],
|
||||
size=[dict_size, EMBED_SIZE],
|
||||
dtype='float32',
|
||||
is_sparse=IS_SPARSE,
|
||||
param_attr='shared_w')
|
||||
|
||||
concat_embed = fluid.layers.concat(
|
||||
input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
|
||||
hidden1 = fluid.layers.fc(input=concat_embed,
|
||||
size=HIDDEN_SIZE,
|
||||
act='sigmoid')
|
||||
predict_word = fluid.layers.fc(input=hidden1,
|
||||
size=dict_size,
|
||||
act='softmax')
|
||||
cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
|
||||
avg_cost = fluid.layers.mean(cost)
|
||||
return avg_cost, predict_word
|
||||
|
||||
word_dict = paddle.dataset.imikolov.build_dict()
|
||||
dict_size = len(word_dict)
|
||||
|
||||
first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
|
||||
second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
|
||||
third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
|
||||
forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
|
||||
next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
|
||||
avg_cost, predict_word = __network__(
|
||||
[first_word, second_word, third_word, forth_word, next_word])
|
||||
|
||||
inference_program = paddle.fluid.default_main_program().clone()
|
||||
|
||||
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
||||
sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
|
||||
test_reader = paddle.batch(
|
||||
paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE)
|
||||
|
||||
return inference_program, avg_cost, train_reader, test_reader, predict_word
|
||||
|
||||
|
||||
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
|
||||
t = fluid.DistributeTranspiler()
|
||||
t.transpile(
|
||||
trainer_id=trainer_id,
|
||||
program=main_program,
|
||||
pservers=pserver_endpoints,
|
||||
trainers=trainers)
|
||||
return t
|
||||
|
||||
|
||||
def run_pserver(pserver_endpoints, trainers, current_endpoint):
|
||||
get_model()
|
||||
t = get_transpiler(0,
|
||||
fluid.default_main_program(), pserver_endpoints,
|
||||
trainers)
|
||||
pserver_prog = t.get_pserver_program(current_endpoint)
|
||||
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
|
||||
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
exe.run(pserver_prog)
|
||||
|
||||
|
||||
class TestDistMnist(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self._trainers = 1
|
||||
self._pservers = 1
|
||||
self._ps_endpoints = "127.0.0.1:9123"
|
||||
|
||||
def start_pserver(self, endpoint):
|
||||
p = Process(
|
||||
target=run_pserver,
|
||||
args=(self._ps_endpoints, self._trainers, endpoint))
|
||||
p.start()
|
||||
return p.pid
|
||||
|
||||
def _wait_ps_ready(self, pid):
|
||||
retry_times = 5
|
||||
while True:
|
||||
assert retry_times >= 0, "wait ps ready failed"
|
||||
time.sleep(1)
|
||||
try:
|
||||
# the listen_and_serv_op would touch a file which contains the listen port
|
||||
# on the /tmp directory until it was ready to process all the RPC call.
|
||||
os.stat("/tmp/paddle.%d.port" % pid)
|
||||
return
|
||||
except os.error:
|
||||
retry_times -= 1
|
||||
|
||||
def stop_pserver(self, pid):
|
||||
os.kill(pid, signal.SIGKILL)
|
||||
|
||||
def test_with_place(self):
|
||||
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
|
||||
pserver_pid = self.start_pserver(self._ps_endpoints)
|
||||
self._wait_ps_ready(pserver_pid)
|
||||
|
||||
self.run_trainer(p, 0)
|
||||
|
||||
self.stop_pserver(pserver_pid)
|
||||
|
||||
def run_trainer(self, place, trainer_id):
|
||||
test_program, avg_cost, train_reader, test_reader, predict = get_model()
|
||||
t = get_transpiler(trainer_id,
|
||||
fluid.default_main_program(), self._ps_endpoints,
|
||||
self._trainers)
|
||||
|
||||
trainer_prog = t.get_trainer_program()
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
|
||||
use_gpu = True if core.is_compiled_with_cuda() else False
|
||||
|
||||
exec_strategy = ExecutionStrategy()
|
||||
exec_strategy.use_cuda = use_gpu
|
||||
train_exe = fluid.ParallelExecutor(
|
||||
use_cuda=use_gpu,
|
||||
main_program=trainer_prog,
|
||||
loss_name=avg_cost.name,
|
||||
exec_strategy=exec_strategy)
|
||||
|
||||
feed_var_list = [
|
||||
var for var in trainer_prog.global_block().vars.itervalues()
|
||||
if var.is_data
|
||||
]
|
||||
|
||||
feeder = fluid.DataFeeder(feed_var_list, place)
|
||||
for pass_id in xrange(10):
|
||||
for batch_id, data in enumerate(train_reader()):
|
||||
avg_loss_np = train_exe.run(feed=feeder.feed(data),
|
||||
fetch_list=[avg_cost.name])
|
||||
loss = np.array(avg_loss_np).mean()
|
||||
if float(loss) < 5.0:
|
||||
return
|
||||
if math.isnan(loss):
|
||||
assert ("Got Nan loss, training failed")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue