commit
c85a323672
@ -0,0 +1,95 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <paddle/framework/tensor.h>
|
||||
#include <pybind11/numpy.h>
|
||||
#include <pybind11/pybind11.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
namespace paddle {
|
||||
|
||||
namespace pybind {
|
||||
|
||||
namespace details {
|
||||
|
||||
template <bool less, size_t I, typename... ARGS>
|
||||
struct CastToPyBufferImpl;
|
||||
|
||||
template <size_t I, typename... ARGS>
|
||||
struct CastToPyBufferImpl<false, I, ARGS...> {
|
||||
py::buffer_info operator()(framework::Tensor &tensor) {
|
||||
PADDLE_THROW("This type of tensor cannot be expose to Python");
|
||||
return py::buffer_info();
|
||||
}
|
||||
};
|
||||
|
||||
template <size_t I, typename... ARGS>
|
||||
struct CastToPyBufferImpl<true, I, ARGS...> {
|
||||
using CUR_TYPE = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
|
||||
py::buffer_info operator()(framework::Tensor &tensor) {
|
||||
PADDLE_ENFORCE(paddle::platform::is_cpu_place(tensor.holder_->place()),
|
||||
"Only CPU tensor can cast to numpy array");
|
||||
|
||||
if (std::type_index(typeid(CUR_TYPE)) == tensor.holder_->type()) {
|
||||
auto dim_vec = framework::vectorize(tensor.dims());
|
||||
std::vector<size_t> dims_outside;
|
||||
std::vector<size_t> strides;
|
||||
dims_outside.resize(dim_vec.size());
|
||||
strides.resize(dim_vec.size());
|
||||
|
||||
size_t prod = 1;
|
||||
for (size_t i = dim_vec.size(); i != 0; --i) {
|
||||
dims_outside[i - 1] = (size_t)dim_vec[i - 1];
|
||||
strides[i - 1] = sizeof(CUR_TYPE) * prod;
|
||||
prod *= dims_outside[i - 1];
|
||||
}
|
||||
|
||||
return py::buffer_info(
|
||||
tensor.mutable_data<CUR_TYPE>(tensor.holder_->place()),
|
||||
sizeof(CUR_TYPE),
|
||||
py::format_descriptor<CUR_TYPE>::format(),
|
||||
(size_t)framework::arity(tensor.dims()),
|
||||
dims_outside,
|
||||
strides);
|
||||
} else {
|
||||
constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
|
||||
return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace details
|
||||
inline py::buffer_info CastToPyBuffer(framework::Tensor &tensor) {
|
||||
auto buffer_info = details::CastToPyBufferImpl<true, 0, float, int>()(tensor);
|
||||
return buffer_info;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void PyTensorSetFromArray(
|
||||
framework::Tensor &self,
|
||||
py::array_t<T, py::array::c_style | py::array::forcecast> array) {
|
||||
std::vector<int> dims;
|
||||
dims.reserve(array.ndim());
|
||||
for (size_t i = 0; i < array.ndim(); ++i) {
|
||||
dims.push_back((int)array.shape()[i]);
|
||||
}
|
||||
|
||||
self.set_dims(framework::make_ddim(dims));
|
||||
auto *dst = self.mutable_data<T>(paddle::platform::CPUPlace());
|
||||
std::memcpy(dst, array.data(), sizeof(T) * array.size());
|
||||
}
|
||||
|
||||
} // namespace pybind
|
||||
} // namespace paddle
|
@ -1,2 +1,3 @@
|
||||
add_python_test(test_framework test_protobuf.py test_scope.py
|
||||
test_default_scope_funcs.py test_op_creation_methods.py)
|
||||
test_default_scope_funcs.py test_op_creation_methods.py
|
||||
test_tensor.py)
|
||||
|
@ -0,0 +1,45 @@
|
||||
import paddle.v2.framework.core as core
|
||||
import unittest
|
||||
import numpy
|
||||
|
||||
|
||||
class TestScope(unittest.TestCase):
|
||||
def test_int_tensor(self):
|
||||
scope = core.Scope(None)
|
||||
var = scope.create_var("test_tensor")
|
||||
tensor = var.get_tensor()
|
||||
|
||||
tensor.set_dims([1000, 784])
|
||||
tensor.alloc_int()
|
||||
|
||||
tensor_array = numpy.array(tensor)
|
||||
self.assertEqual((1000, 784), tensor_array.shape)
|
||||
tensor_array[3, 9] = 1
|
||||
tensor_array[19, 11] = 2
|
||||
tensor.set(tensor_array)
|
||||
|
||||
tensor_array_2 = numpy.array(tensor)
|
||||
self.assertEqual(1.0, tensor_array_2[3, 9])
|
||||
self.assertEqual(2.0, tensor_array_2[19, 11])
|
||||
|
||||
def test_float_tensor(self):
|
||||
scope = core.Scope(None)
|
||||
var = scope.create_var("test_tensor")
|
||||
tensor = var.get_tensor()
|
||||
|
||||
tensor.set_dims([1000, 784])
|
||||
tensor.alloc_float()
|
||||
|
||||
tensor_array = numpy.array(tensor)
|
||||
self.assertEqual((1000, 784), tensor_array.shape)
|
||||
tensor_array[3, 9] = 1.0
|
||||
tensor_array[19, 11] = 2.0
|
||||
tensor.set(tensor_array)
|
||||
|
||||
tensor_array_2 = numpy.array(tensor)
|
||||
self.assertAlmostEqual(1.0, tensor_array_2[3, 9])
|
||||
self.assertAlmostEqual(2.0, tensor_array_2[19, 11])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue