|
|
|
@ -143,7 +143,7 @@ class BottleneckBlock(fluid.imperative.Layer):
|
|
|
|
|
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
|
|
|
|
|
|
|
|
|
layer_helper = LayerHelper('elementwise_add_activation', act='relu')
|
|
|
|
|
return layer_helper.append_activation(y, force_no_inplace=True)
|
|
|
|
|
return layer_helper.append_activation(y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ResNet(fluid.imperative.Layer):
|
|
|
|
@ -204,12 +204,9 @@ class ResNet(fluid.imperative.Layer):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestImperativeResnet(unittest.TestCase):
|
|
|
|
|
def test_resnet_gpu_float32(self):
|
|
|
|
|
def test_resnet_float32(self):
|
|
|
|
|
seed = 90
|
|
|
|
|
|
|
|
|
|
if not core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
batch_size = train_parameters["batch_size"]
|
|
|
|
|
batch_num = 1
|
|
|
|
|
with fluid.imperative.guard():
|
|
|
|
@ -277,168 +274,8 @@ class TestImperativeResnet(unittest.TestCase):
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
resnet = ResNet()
|
|
|
|
|
optimizer = optimizer_setting(train_parameters)
|
|
|
|
|
|
|
|
|
|
np.random.seed(seed)
|
|
|
|
|
import random
|
|
|
|
|
random.seed = seed
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.flowers.train(use_xmap=False),
|
|
|
|
|
batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
img = fluid.layers.data(
|
|
|
|
|
name='pixel', shape=[3, 224, 224], dtype='float32')
|
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
|
out = resnet(img)
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=out, label=label)
|
|
|
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
|
optimizer.minimize(avg_loss)
|
|
|
|
|
|
|
|
|
|
# initialize params and fetch them
|
|
|
|
|
static_param_init_value = {}
|
|
|
|
|
static_param_name_list = []
|
|
|
|
|
static_grad_name_list = []
|
|
|
|
|
for param in fluid.default_startup_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
static_param_name_list.append(param.name)
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
if not param.stop_gradient:
|
|
|
|
|
static_grad_name_list.append(param.name +
|
|
|
|
|
core.grad_var_suffix())
|
|
|
|
|
|
|
|
|
|
out = exe.run(fluid.default_startup_program(),
|
|
|
|
|
fetch_list=static_param_name_list)
|
|
|
|
|
|
|
|
|
|
for i in range(len(static_param_name_list)):
|
|
|
|
|
static_param_init_value[static_param_name_list[i]] = out[i]
|
|
|
|
|
|
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
if batch_id >= batch_num:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
static_x_data = np.array(
|
|
|
|
|
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
|
|
|
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
|
|
|
[batch_size, 1])
|
|
|
|
|
|
|
|
|
|
fetch_list = [avg_loss.name]
|
|
|
|
|
fetch_list.extend(static_param_name_list)
|
|
|
|
|
fetch_list.extend(static_grad_name_list)
|
|
|
|
|
out = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={"pixel": static_x_data,
|
|
|
|
|
"label": y_data},
|
|
|
|
|
fetch_list=fetch_list)
|
|
|
|
|
|
|
|
|
|
static_param_value = {}
|
|
|
|
|
static_grad_value = {}
|
|
|
|
|
static_out = out[0]
|
|
|
|
|
param_start_pos = 1
|
|
|
|
|
grad_start_pos = len(static_param_name_list) + param_start_pos
|
|
|
|
|
for i in range(param_start_pos,
|
|
|
|
|
len(static_param_name_list) + param_start_pos):
|
|
|
|
|
static_param_value[static_param_name_list[
|
|
|
|
|
i - param_start_pos]] = out[i]
|
|
|
|
|
for i in range(grad_start_pos,
|
|
|
|
|
len(static_grad_name_list) + grad_start_pos):
|
|
|
|
|
static_grad_value[static_grad_name_list[
|
|
|
|
|
i - grad_start_pos]] = out[i]
|
|
|
|
|
|
|
|
|
|
self.assertTrue(np.allclose(static_out, dy_out))
|
|
|
|
|
|
|
|
|
|
self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
|
|
|
|
|
for key, value in six.iteritems(static_param_init_value):
|
|
|
|
|
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
|
|
|
|
|
self.assertTrue(np.isfinite(value.all()))
|
|
|
|
|
self.assertFalse(np.isnan(value.any()))
|
|
|
|
|
|
|
|
|
|
self.assertEqual(len(dy_grad_value), len(static_grad_value))
|
|
|
|
|
for key, value in six.iteritems(static_grad_value):
|
|
|
|
|
# TODO(minqiyang): find a way to align the gradient
|
|
|
|
|
self.assertTrue(np.allclose(value, dy_grad_value[key]))
|
|
|
|
|
self.assertTrue(np.isfinite(value.all()))
|
|
|
|
|
self.assertFalse(np.isnan(value.any()))
|
|
|
|
|
|
|
|
|
|
self.assertEqual(len(dy_param_value), len(static_param_value))
|
|
|
|
|
for key, value in six.iteritems(static_param_value):
|
|
|
|
|
self.assertTrue(np.allclose(value, dy_param_value[key]))
|
|
|
|
|
self.assertTrue(np.isfinite(value.all()))
|
|
|
|
|
self.assertFalse(np.isnan(value.any()))
|
|
|
|
|
|
|
|
|
|
def test_resnet_cpu_float32(self):
|
|
|
|
|
seed = 90
|
|
|
|
|
|
|
|
|
|
batch_size = train_parameters["batch_size"]
|
|
|
|
|
batch_num = 1
|
|
|
|
|
with fluid.imperative.guard(place=fluid.CPUPlace()):
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
|
|
|
|
|
|
resnet = ResNet()
|
|
|
|
|
optimizer = optimizer_setting(train_parameters)
|
|
|
|
|
np.random.seed(seed)
|
|
|
|
|
import random
|
|
|
|
|
random.seed = seed
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.flowers.train(use_xmap=False),
|
|
|
|
|
batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
dy_param_init_value = {}
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_init_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
if batch_id >= batch_num:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
dy_x_data = np.array(
|
|
|
|
|
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
|
|
|
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
|
|
|
batch_size, 1)
|
|
|
|
|
|
|
|
|
|
img = to_variable(dy_x_data)
|
|
|
|
|
label = to_variable(y_data)
|
|
|
|
|
label._stop_gradient = True
|
|
|
|
|
|
|
|
|
|
out = resnet(img)
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=out, label=label)
|
|
|
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
|
|
|
|
|
|
dy_out = avg_loss._numpy()
|
|
|
|
|
|
|
|
|
|
if batch_id == 0:
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
if param.name not in dy_param_init_value:
|
|
|
|
|
dy_param_init_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
avg_loss._backward()
|
|
|
|
|
|
|
|
|
|
dy_grad_value = {}
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
if not param.stop_gradient:
|
|
|
|
|
np_array = np.array(param._ivar._grad_ivar().value()
|
|
|
|
|
.get_tensor())
|
|
|
|
|
dy_grad_value[param.name + core.grad_var_suffix(
|
|
|
|
|
)] = np_array
|
|
|
|
|
|
|
|
|
|
optimizer.minimize(avg_loss)
|
|
|
|
|
|
|
|
|
|
dy_param_value = {}
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
with new_program_scope():
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace(
|
|
|
|
|
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
resnet = ResNet()
|
|
|
|
|
optimizer = optimizer_setting(train_parameters)
|
|
|
|
|