|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
from paddle.v2.framework.layers import fc_layer, data_layer, cross_entropy, mean, square_error_cost, conv2d_layer
|
|
|
|
|
import paddle.v2.framework.layers as layers
|
|
|
|
|
from paddle.v2.framework.framework import Program, g_program
|
|
|
|
|
import paddle.v2.framework.core as core
|
|
|
|
|
import unittest
|
|
|
|
@ -7,15 +7,16 @@ import unittest
|
|
|
|
|
class TestBook(unittest.TestCase):
|
|
|
|
|
def test_fit_a_line(self):
|
|
|
|
|
program = Program()
|
|
|
|
|
x = data_layer(
|
|
|
|
|
x = layers.data(
|
|
|
|
|
name='x', shape=[13], data_type='float32', program=program)
|
|
|
|
|
y_predict = fc_layer(input=x, size=1, act=None, program=program)
|
|
|
|
|
y_predict = layers.fc(input=x, size=1, act=None, program=program)
|
|
|
|
|
|
|
|
|
|
y = data_layer(
|
|
|
|
|
y = layers.data(
|
|
|
|
|
name='y', shape=[1], data_type='float32', program=program)
|
|
|
|
|
cost = square_error_cost(input=y_predict, label=y, program=program)
|
|
|
|
|
cost = layers.square_error_cost(
|
|
|
|
|
input=y_predict, label=y, program=program)
|
|
|
|
|
|
|
|
|
|
avg_cost = mean(x=cost, program=program)
|
|
|
|
|
avg_cost = layers.mean(x=cost, program=program)
|
|
|
|
|
self.assertIsNotNone(avg_cost)
|
|
|
|
|
program.append_backward(avg_cost, set())
|
|
|
|
|
print str(program)
|
|
|
|
@ -24,16 +25,18 @@ class TestBook(unittest.TestCase):
|
|
|
|
|
program = Program()
|
|
|
|
|
|
|
|
|
|
# Change g_program, so the rest layers use `g_program`
|
|
|
|
|
images = data_layer(
|
|
|
|
|
images = layers.data(
|
|
|
|
|
name='pixel', shape=[784], data_type='float32', program=program)
|
|
|
|
|
label = data_layer(
|
|
|
|
|
label = layers.data(
|
|
|
|
|
name='label', shape=[1], data_type='int32', program=program)
|
|
|
|
|
hidden1 = fc_layer(input=images, size=128, act='relu', program=program)
|
|
|
|
|
hidden2 = fc_layer(input=hidden1, size=64, act='relu', program=program)
|
|
|
|
|
predict = fc_layer(
|
|
|
|
|
input=hidden2, size=10, act='softmax', program=program)
|
|
|
|
|
cost = cross_entropy(input=predict, label=label, program=program)
|
|
|
|
|
avg_cost = mean(x=cost, program=program)
|
|
|
|
|
hidden1 = layers.fc(input=images, size=128, act='relu', program=program)
|
|
|
|
|
hidden2 = layers.fc(input=hidden1, size=64, act='relu', program=program)
|
|
|
|
|
predict = layers.fc(input=hidden2,
|
|
|
|
|
size=10,
|
|
|
|
|
act='softmax',
|
|
|
|
|
program=program)
|
|
|
|
|
cost = layers.cross_entropy(input=predict, label=label, program=program)
|
|
|
|
|
avg_cost = layers.mean(x=cost, program=program)
|
|
|
|
|
self.assertIsNotNone(avg_cost)
|
|
|
|
|
# print str(program)
|
|
|
|
|
|
|
|
|
@ -48,11 +51,10 @@ class TestBook(unittest.TestCase):
|
|
|
|
|
# print str(program)
|
|
|
|
|
|
|
|
|
|
def test_simple_conv2d(self):
|
|
|
|
|
pd = core.ProgramDesc.__create_program_desc__()
|
|
|
|
|
program = Program(desc=pd)
|
|
|
|
|
images = data_layer(
|
|
|
|
|
program = Program()
|
|
|
|
|
images = layers.data(
|
|
|
|
|
name='pixel', shape=[3, 48, 48], data_type='int32', program=program)
|
|
|
|
|
conv2d_layer(
|
|
|
|
|
layers.conv2d(
|
|
|
|
|
input=images, num_filters=3, filter_size=[4, 4], program=program)
|
|
|
|
|
|
|
|
|
|
print str(program)
|
|
|
|
|