add hdfs_utils & helper & node doc

revert-15207-remove_op_handle_lock_and_fix_var
heqiaozhi 7 years ago
parent 3759600019
commit caa6b59677

File diff suppressed because it is too large Load Diff

@ -15,13 +15,26 @@
from mpi4py import MPI
import ps_pb2 as pslib
class FileSystem(object):
def __init__(self, fs_type="afs",
"""
A file system that support async_executor hadoop client desc.
Args:
fs_type (string): fs_type, for example is "afs"
user (string): hadoop param
passwd (string): hadoop param
hadoop bin (string): hadoop param
Examples:
fs = FileSystm()
"""
def __init__(self,
fs_type="afs",
uri="afs://tianqi.afs.baidu.com:9902",
user=None,
passwd=None,
hadoop_bin="",
afs_conf=None):
hadoop_bin=""):
assert user != None
assert passwd != None
assert hadoop_bin != None
@ -38,9 +51,22 @@ class FileSystem(object):
#self.fs_client.afs_conf = afs_conf if not afs_conf else ""
def get_desc(self):
"""
get hadoop desc.
"""
return self.fs_client
class MPIHelper(object):
"""
MPIHelper is a wrapper of mpi4py, supprot get_rank get_size etc.
Args:
No params
Examples:
mh = MPIHelper()
mh.get_ip()
"""
def __init__(self):
self.comm = MPI.COMM_WORLD
@ -61,5 +87,3 @@ class MPIHelper(object):
def finalize(self):
MPI.Finalize()

@ -13,17 +13,34 @@
import ps_pb2 as pslib
class Server(object):
"""
A Server basic class.
"""
def __init__(self):
pass
class Worker(object):
"""
A Worker basic class.
"""
def __init__(self):
pass
class DownpourServer(Server):
"""
DownpourServer class is used to generate server program_desc
Args:
server: it is pslib.ServerParameter()
Examples:
server = DownpourServer()
"""
def __init__(self):
self.server_ = pslib.ServerParameter()
self.server_.downpour_server_param.service_param.start_server_port = 0
@ -33,8 +50,18 @@ class DownpourServer(Server):
self.server_.downpour_server_param.service_param.start_server_port = 0
self.server_.downpour_server_param.service_param.server_thread_num = 12
def add_sparse_table(self, table_id, learning_rate,
slot_key_vars, slot_value_var):
def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
slot_value_var):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters. \
Can be a float value
slot_key_vars(string): slot key id
slot_value_var(string): slot key value after embedding
Returns:
return None
"""
table = self.server_.downpour_server_param.downpour_table_param.add()
table.table_id = table_id
table.table_class = "DownpourSparseTable"
@ -44,10 +71,10 @@ class DownpourServer(Server):
table.accessor.sparse_sgd_param.initial_g2sum = 3
table.accessor.sparse_sgd_param.initial_range = 1e-4
table.accessor.sparse_sgd_param.weight_bounds.extend([-10, 10])
table.accessor.embedx_dim = 8
table.accessor.embedx_threshold = 5
table.accessor.fea_dim = 11
table.accessor.fea_dim = 11
#table.accessor.fea_dim = abs(reduce(lambda x, y: x * y,
# slot_value_var[0].shape, 1))
table.accessor.downpour_accessor_param.nonclk_coeff = 0.1
@ -58,53 +85,99 @@ class DownpourServer(Server):
table.accessor.downpour_accessor_param.show_click_decay_rate = 0.999
table.accessor.downpour_accessor_param.delete_threshold = 0.8
def add_dense_table(self, table_id, learning_rate,
param_var, grad_var):
def add_dense_table(self, table_id, learning_rate, param_var, grad_var):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters. \
Can be a float value
param_var(list): all dense param. it is a list.
grad_var(list): all dense grad parm it is a list.
Returns:
return None
"""
table = self.server_.downpour_server_param.downpour_table_param.add()
table.table_id = table_id
table.table_class = "DownpourDenseTable"
table.type = pslib.PS_DENSE_TABLE
table.accessor.accessor_class = "DownpourDenseValueAccessor"
table.accessor.dense_sgd_param.name = "adam"
table.accessor.dense_sgd_param.name = "adam"
table.accessor.dense_sgd_param.adam.learning_rate = learning_rate
table.accessor.dense_sgd_param.adam.avg_decay_rate = 0.999993
table.accessor.dense_sgd_param.adam.ada_decay_rate = 0.9999
table.accessor.dense_sgd_param.adam.avg_decay_rate = 0.999993
table.accessor.dense_sgd_param.adam.ada_decay_rate = 0.9999
table.accessor.dense_sgd_param.adam.ada_epsilon = 1e-8
table.accessor.dense_sgd_param.adam.mom_decay_rate = 0.99
table.accessor.dense_sgd_param.naive.learning_rate = 0.0002
fea_dim = 0
for param in filter(lambda x: x.name.find("embedding") == -1, param_var):
for param in filter(lambda x: x.name.find("embedding") == -1,
param_var):
fea_dim += reduce(lambda x, y: x * y, param.shape, 1)
table.accessor.fea_dim = fea_dim
def get_desc(self):
"""
Return downpour server program_desc
"""
return self.server_
class DownpourWorker(Worker):
"""
DownpourWorker class is used to generate worker program_desc
Args:
window (int): push params frequency
worker: it is pslib.DownpourTrainerParameter
Examples:
worker = DownpourWorker(1)
"""
def __init__(self, window):
self.window = window
self.worker_ = pslib.DownpourTrainerParameter()
#self.worker_.pull_dense_per_batch = window
#self.worker_.push_dense_per_batch = window
def add_sparse_table(self, table_id, learning_rate,
slot_key_vars, slot_value_vars):
def add_sparse_table(self, table_id, learning_rate, slot_key_vars,
slot_value_vars):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters. \
Can be a float value
slot_key_vars(string): slot key id
slot_value_var(string): slot key value after embedding
Returns:
return None
"""
table = self.worker_.sparse_table.add()
table.table_id = table_id
table.slot_key.extend(
[var.name for var in slot_key_vars])
table.slot_value.extend(
[var.name for var in slot_value_vars])
table.slot_key.extend([var.name for var in slot_key_vars])
table.slot_value.extend([var.name for var in slot_value_vars])
table.slot_gradient.extend(
[var.name + "@GRAD" for var in slot_value_vars])
def add_dense_table(self, table_id, learning_rate,
param_vars, grad_vars):
def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars):
"""
Args:
table_id(int): id of sparse params table
learning_rate(float): the learning rate used to update parameters. \
Can be a float value
param_var(list): all dense param. it is a list.
grad_var(list): all dense grad parm it is a list.
Returns:
return None
"""
table = self.worker_.dense_table.add()
table.table_id = table_id
table.dense_variable_name.extend(filter(lambda x: x.find("embedding") == -1, [p.name for p in param_vars]))
table.dense_gradient_variable_name.extend(filter(lambda x: x.find("embedding") == -1, [g.name for g in grad_vars]))
table.dense_variable_name.extend(
filter(lambda x: x.find("embedding") == -1,
[p.name for p in param_vars]))
table.dense_gradient_variable_name.extend(
filter(lambda x: x.find("embedding") == -1,
[g.name for g in grad_vars]))
def get_desc(self):
"""
Return downpour worker program_desc
"""
return self.worker_

Loading…
Cancel
Save