|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
@ -30,8 +30,10 @@ class TestWhileOp(unittest.TestCase):
|
|
|
|
|
"d1", shape=[10], append_batch_size=False, dtype='float32')
|
|
|
|
|
d2 = layers.data(
|
|
|
|
|
"d2", shape=[10], append_batch_size=False, dtype='float32')
|
|
|
|
|
|
|
|
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
|
|
|
i.stop_gradient = True
|
|
|
|
|
|
|
|
|
|
init = layers.zeros(shape=[10], dtype='float32')
|
|
|
|
|
mem_array = layers.array_write(x=init, i=i)
|
|
|
|
|
data_array = layers.array_write(x=d0, i=i)
|
|
|
|
@ -45,11 +47,19 @@ class TestWhileOp(unittest.TestCase):
|
|
|
|
|
i = layers.zeros(shape=[1], dtype='int64')
|
|
|
|
|
i.stop_gradient = True
|
|
|
|
|
|
|
|
|
|
array_len = layers.fill_constant(shape=[1], dtype='int64', value=3)
|
|
|
|
|
array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
|
|
|
array_len.stop_gradient = True
|
|
|
|
|
cond = layers.less_than(x=i, y=array_len)
|
|
|
|
|
|
|
|
|
|
j = layers.fill_constant(shape=[1], dtype='int64', value=1)
|
|
|
|
|
j.stop_gradient = True
|
|
|
|
|
|
|
|
|
|
array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
|
|
|
|
|
array_len2.stop_gradient = True
|
|
|
|
|
cond2 = layers.less_than(x=j, y=array_len2)
|
|
|
|
|
|
|
|
|
|
while_op = layers.While(cond=cond)
|
|
|
|
|
while_op2 = layers.While(cond=cond2)
|
|
|
|
|
with while_op.block():
|
|
|
|
|
d = layers.array_read(array=data_array, i=i)
|
|
|
|
|
prev = layers.array_read(array=mem_array, i=i)
|
|
|
|
@ -59,7 +69,16 @@ class TestWhileOp(unittest.TestCase):
|
|
|
|
|
layers.array_write(result, i=i, array=mem_array)
|
|
|
|
|
layers.less_than(x=i, y=array_len, cond=cond)
|
|
|
|
|
|
|
|
|
|
sum_result = layers.array_read(array=mem_array, i=i)
|
|
|
|
|
with while_op2.block():
|
|
|
|
|
d2 = layers.array_read(array=data_array, i=j)
|
|
|
|
|
prev2 = layers.array_read(array=mem_array, i=j)
|
|
|
|
|
result2 = layers.sums(input=[d2, prev2])
|
|
|
|
|
|
|
|
|
|
j = layers.increment(x=j, in_place=True)
|
|
|
|
|
layers.array_write(result2, i=j, array=mem_array)
|
|
|
|
|
layers.less_than(x=j, y=array_len2, cond=cond2)
|
|
|
|
|
|
|
|
|
|
sum_result = layers.array_read(array=mem_array, i=j)
|
|
|
|
|
loss = layers.mean(sum_result)
|
|
|
|
|
|
|
|
|
|
append_backward(loss)
|
|
|
|
|