add comment and refine code, test=develop

fix/ir_debug
jerrywgz 6 years ago
parent 7d0c5fafa9
commit cc53453057

@ -318,7 +318,7 @@ paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'nms_threshold', 'keep_top_k', 'normalized', 'nms_eta', 'background_label'], varargs=None, keywords=None, defaults=(True, 1.0, 0))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'nms_threshold', 'keep_top_k', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))

@ -93,25 +93,5 @@ void BboxOverlaps(const framework::Tensor& r_boxes,
}
}
template <class T>
void SliceOneClass(const platform::DeviceContext& ctx,
const framework::Tensor& items, const int class_id,
framework::Tensor* one_class_item) {
T* item_data = one_class_item->mutable_data<T>(ctx.GetPlace());
const T* items_data = items.data<T>();
const int64_t num_item = items.dims()[0];
const int class_num = items.dims()[1];
int item_size = 1;
if (items.dims().size() == 3) {
item_size = items.dims()[2];
}
for (int i = 0; i < num_item; ++i) {
for (int j = 0; j < item_size; ++j) {
item_data[i * item_size + j] =
items_data[i * class_num * item_size + class_id * item_size + j];
}
}
}
} // namespace operators
} // namespace paddle

File diff suppressed because it is too large Load Diff

@ -1821,8 +1821,88 @@ def multiclass_nms(bboxes,
keep_top_k,
normalized=True,
nms_eta=1.,
background_label=0):
background_label=0,
name=None):
"""
**Multiclass NMS**
This operator is to do multi-class non maximum suppression (NMS) on
boxes and scores.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
Args:
bboxes (Variable): Two types of bboxes are supported:
1. (Tensor) A 3-D Tensor with shape
[N, M, 4 or 8 16 24 32] represents the
predicted locations of M bounding bboxes,
N is the batch size. Each bounding box has four
coordinate values and the layout is
[xmin, ymin, xmax, ymax], when box size equals to 4.
2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
M is the number of bounding boxes, C is the
class number
scores (Variable): Two types of scores are supported:
1. (Tensor) A 3-D Tensor with shape [N, C, M]
represents the predicted confidence predictions.
N is the batch size, C is the class number, M is
number of bounding boxes. For each category there
are total M scores which corresponding M bounding
boxes. Please note, M is equal to the 2nd dimension
of BBoxes.
2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
M is the number of bbox, C is the class number.
In this case, input BBoxes should be the second
case with shape [M, C, 4].
background_label (int): The index of background label, the background
label will be ignored. If set to -1, then all
categories will be considered. Default: 0
score_threshold (float): Threshold to filter out bounding boxes with
low confidence score. If not provided,
consider all boxes.
nms_top_k (int): Maximum number of detections to be kept according to
the confidences aftern the filtering detections based
on score_threshold.
nms_threshold (float): The threshold to be used in NMS. Default: 0.3
nms_eta (float): The threshold to be used in NMS. Default: 1.0
keep_top_k (int): Number of total bboxes to be kept per image after NMS
step. -1 means keeping all bboxes after NMS step.
normalized (bool): Whether detections are normalized. Default: True
name(str): Name of the multiclass nms op. Default: None.
Returns:
Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
or A 2-D LoDTensor with shape [No, 10] represents the detections.
Each row has 10 values:
[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the
total number of detections. If there is no detected boxes for all
images, lod will be set to {0, 1} and Out only contains one value
which is -1.
Examples:
.. code-block:: python
boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
dtype='float32', lod_level=1)
scores = fluid.layers.data(name='scores', shape=[81],
dtype='float32', lod_level=1)
out = fluid.layers.multiclass_nms(bboxes=boxes,
scores=scores,
background_label=0,
score_threshold=0.5,
nms_top_k=400,
nms_threshold=0.3,
keep_top_k=200,
normalized=False)
"""
helper = LayerHelper('multiclass_nms', **locals())

Loading…
Cancel
Save