|
|
|
@ -1,8 +1,6 @@
|
|
|
|
|
import unittest
|
|
|
|
|
from op_test_util import OpTestMeta
|
|
|
|
|
from gradient_checker import GradientChecker, create_op
|
|
|
|
|
from paddle.v2.framework.op import Operator
|
|
|
|
|
import numpy as np
|
|
|
|
|
from op_test import OpTest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def modified_huber_loss_forward(val):
|
|
|
|
@ -14,11 +12,9 @@ def modified_huber_loss_forward(val):
|
|
|
|
|
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestModifiedHuberLossOp_f0(unittest.TestCase):
|
|
|
|
|
__metaclass__ = OpTestMeta
|
|
|
|
|
|
|
|
|
|
class TestModifiedHuberLossOp(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.type = 'modified_huber_loss'
|
|
|
|
|
self.op_type = 'modified_huber_loss'
|
|
|
|
|
samples_num = 32
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': np.random.uniform(-1, 1., (samples_num, 1)).astype('float32'),
|
|
|
|
@ -32,22 +28,11 @@ class TestModifiedHuberLossOp_f0(unittest.TestCase):
|
|
|
|
|
'Out': loss.reshape((samples_num, 1))
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
|
|
class TestModifiedHuberLossGradOp(GradientChecker):
|
|
|
|
|
def test_modified_huber_loss_b0(self):
|
|
|
|
|
samples_num = 10
|
|
|
|
|
inputs = {
|
|
|
|
|
'X': np.random.uniform(-1, 1, (samples_num, 1)).astype('float32'),
|
|
|
|
|
'Y': np.random.choice([0, 1], samples_num).reshape((samples_num, 1))
|
|
|
|
|
}
|
|
|
|
|
op = Operator(
|
|
|
|
|
"modified_huber_loss",
|
|
|
|
|
X='X',
|
|
|
|
|
Y='Y',
|
|
|
|
|
IntermediateVal='IntermediateVal',
|
|
|
|
|
Out='Out')
|
|
|
|
|
self.compare_grad(op, inputs, no_grad_set=set(['IntermediateVal', 'Y']))
|
|
|
|
|
self.check_grad(op, inputs, set(["X"]), "Out")
|
|
|
|
|
def test_check_grad(self):
|
|
|
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.005)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|