|
|
|
@ -17,6 +17,7 @@ from __future__ import print_function
|
|
|
|
|
from .. import core
|
|
|
|
|
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator
|
|
|
|
|
from ..layers.layer_function_generator import OpProtoHolder
|
|
|
|
|
from ..layers import common_methods
|
|
|
|
|
from . import to_variable, no_grad
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
@ -30,6 +31,8 @@ _supported_int_dtype_ = [
|
|
|
|
|
core.VarDesc.VarType.INT64,
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
_already_patch_varbase = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def monkey_patch_math_varbase():
|
|
|
|
|
"""
|
|
|
|
@ -140,25 +143,30 @@ def monkey_patch_math_varbase():
|
|
|
|
|
else:
|
|
|
|
|
return int(var.numpy().flatten()[0])
|
|
|
|
|
|
|
|
|
|
def _scalar_elementwise_add_(var, value):
|
|
|
|
|
@property
|
|
|
|
|
def _ndim_(var):
|
|
|
|
|
return len(var.shape)
|
|
|
|
|
|
|
|
|
|
def _scalar_add_(var, value):
|
|
|
|
|
return _scalar_elementwise_op_(var, 1.0, value)
|
|
|
|
|
|
|
|
|
|
def _scalar_elementwise_sub_(var, value):
|
|
|
|
|
def _scalar_sub_(var, value):
|
|
|
|
|
return _scalar_elementwise_op_(var, 1.0, -value)
|
|
|
|
|
|
|
|
|
|
def _scalar_elementwise_rsub_(var, value):
|
|
|
|
|
def _scalar_rsub_(var, value):
|
|
|
|
|
return _scalar_elementwise_op_(var, -1.0, value)
|
|
|
|
|
|
|
|
|
|
def _scalar_elementwise_mul_(var, value):
|
|
|
|
|
def _scalar_mul_(var, value):
|
|
|
|
|
return _scalar_elementwise_op_(var, value, 0.0)
|
|
|
|
|
|
|
|
|
|
def _scalar_elementwise_div_(var, value):
|
|
|
|
|
def _scalar_div_(var, value):
|
|
|
|
|
return _scalar_elementwise_op_(var, 1.0 / value, 0.0)
|
|
|
|
|
|
|
|
|
|
def _elemwise_method_creator_(method_name,
|
|
|
|
|
op_type,
|
|
|
|
|
reverse=False,
|
|
|
|
|
scalar_method=None):
|
|
|
|
|
# for binary operator such as elementwise, compare
|
|
|
|
|
def _binary_creator_(method_name,
|
|
|
|
|
op_type,
|
|
|
|
|
reverse=False,
|
|
|
|
|
scalar_method=None):
|
|
|
|
|
def __impl__(self, other_var):
|
|
|
|
|
# FIXME(zjl): elementwise_div between integers cannot be converted to scale,
|
|
|
|
|
# which may lose accuracy. This is a hot fix for release 1.6.
|
|
|
|
@ -200,60 +208,119 @@ def monkey_patch_math_varbase():
|
|
|
|
|
__impl__.__doc__ = """
|
|
|
|
|
{0}
|
|
|
|
|
Args:
|
|
|
|
|
self(Variable): left hand variable
|
|
|
|
|
other_var(Variable|float|int): right hand variable
|
|
|
|
|
self(Tensor): left hand Tensor
|
|
|
|
|
other_var(Tensor|float|int): right hand Tensor
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Variable
|
|
|
|
|
Tensor
|
|
|
|
|
""".format(comment)
|
|
|
|
|
__impl__.__name__ = method_name
|
|
|
|
|
return __impl__
|
|
|
|
|
|
|
|
|
|
# inject methods
|
|
|
|
|
for method_name, op_type, reverse, scalar_method in (
|
|
|
|
|
("__add__", "elementwise_add", False, _scalar_elementwise_add_),
|
|
|
|
|
# a+b == b+a. Do not need to reverse explicitly
|
|
|
|
|
("__radd__", "elementwise_add", False, _scalar_elementwise_add_),
|
|
|
|
|
("__sub__", "elementwise_sub", False, _scalar_elementwise_sub_),
|
|
|
|
|
("__rsub__", "elementwise_sub", True, _scalar_elementwise_rsub_),
|
|
|
|
|
("__mul__", "elementwise_mul", False, _scalar_elementwise_mul_),
|
|
|
|
|
# a*b == b*a. Do not need to reverse explicitly
|
|
|
|
|
("__rmul__", "elementwise_mul", False, _scalar_elementwise_mul_),
|
|
|
|
|
("__div__", "elementwise_div", False, _scalar_elementwise_div_),
|
|
|
|
|
("__truediv__", "elementwise_div", False, _scalar_elementwise_div_),
|
|
|
|
|
("__rdiv__", "elementwise_div", True, None),
|
|
|
|
|
("__rtruediv__", "elementwise_div", True, None),
|
|
|
|
|
("__pow__", "elementwise_pow", False, None),
|
|
|
|
|
("__rpow__", "elementwise_pow", True, None),
|
|
|
|
|
("__floordiv__", "elementwise_floordiv", False, None),
|
|
|
|
|
("__mod__", "elementwise_mod", False, None),
|
|
|
|
|
# for logical compare
|
|
|
|
|
("__eq__", "equal", False, None),
|
|
|
|
|
("__ne__", "not_equal", False, None),
|
|
|
|
|
("__lt__", "less_than", False, None),
|
|
|
|
|
("__le__", "less_equal", False, None),
|
|
|
|
|
("__gt__", "greater_than", False, None),
|
|
|
|
|
("__ge__", "greater_equal", False, None)):
|
|
|
|
|
|
|
|
|
|
setattr(core.VarBase, method_name,
|
|
|
|
|
_elemwise_method_creator_(method_name, op_type, reverse,
|
|
|
|
|
scalar_method))
|
|
|
|
|
|
|
|
|
|
# b = -a
|
|
|
|
|
core.VarBase.__neg__ = _neg_
|
|
|
|
|
core.VarBase.__float__ = _float_
|
|
|
|
|
core.VarBase.__long__ = _long_
|
|
|
|
|
core.VarBase.__int__ = _int_
|
|
|
|
|
core.VarBase.__len__ = _len_
|
|
|
|
|
core.VarBase.__index__ = _index_
|
|
|
|
|
core.VarBase.astype = astype
|
|
|
|
|
"""
|
|
|
|
|
When code is written like this
|
|
|
|
|
y = np.pi * var
|
|
|
|
|
ndarray.__mul__(self, var) is called, var will be traced as an array(by using __len__, __getitem__), which is not right.
|
|
|
|
|
when var.__array_ufunc__ is set to None, var.__rmul__(self, np) will be called.
|
|
|
|
|
# Todo(zhouwei): implement dygraph template to adapt to any function, receive('op_type', 'arg_template')
|
|
|
|
|
# Such as _method_creator_('addmm', 'x, y, alpha=1.0, beta=1.0, name=None'). It can reduce call time.
|
|
|
|
|
def _method_creator_(op_type, arg_template=None):
|
|
|
|
|
def __impl__(self):
|
|
|
|
|
op = getattr(core.ops, op_type)
|
|
|
|
|
return op(self)
|
|
|
|
|
|
|
|
|
|
The details can be seen bellow:
|
|
|
|
|
https://docs.scipy.org/doc/numpy-1.13.0/neps/ufunc-overrides.html#behavior-in-combination-with-python-s-binary-operations
|
|
|
|
|
"""
|
|
|
|
|
core.VarBase.__array_ufunc__ = None
|
|
|
|
|
__impl__.__doc__ = """
|
|
|
|
|
|
|
|
|
|
See paddle.{}""".format(op_type)
|
|
|
|
|
__impl__.__name__ = op_type
|
|
|
|
|
|
|
|
|
|
return __impl__
|
|
|
|
|
|
|
|
|
|
varbase_methods = [
|
|
|
|
|
# Type1: From custom fun or lambda
|
|
|
|
|
## b=-a
|
|
|
|
|
('__neg__', _neg_),
|
|
|
|
|
('__float__', _float_),
|
|
|
|
|
('__long__', _long_),
|
|
|
|
|
('__int__', _int_),
|
|
|
|
|
('__len__', _len_),
|
|
|
|
|
('__index__', _index_),
|
|
|
|
|
('astype', astype),
|
|
|
|
|
('dim', lambda x: len(x.shape)),
|
|
|
|
|
('ndimension', lambda x: len(x.shape)),
|
|
|
|
|
('ndim', _ndim_),
|
|
|
|
|
('size', lambda x: x.shape),
|
|
|
|
|
# Type2: From Template that create core.ops automatically. It's recommended.
|
|
|
|
|
('__add__',
|
|
|
|
|
_binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
|
|
|
|
|
## a+b == b+a. Do not need to reverse explicitly
|
|
|
|
|
('__radd__',
|
|
|
|
|
_binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
|
|
|
|
|
('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
|
|
|
|
|
_scalar_sub_)),
|
|
|
|
|
('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
|
|
|
|
|
_scalar_rsub_)),
|
|
|
|
|
('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
|
|
|
|
|
_scalar_mul_)),
|
|
|
|
|
## a*b == b*a. Do not need to reverse explicitly
|
|
|
|
|
('__rmul__',
|
|
|
|
|
_binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
|
|
|
|
|
('__div__', _binary_creator_('__div__', 'elementwise_div', False,
|
|
|
|
|
_scalar_div_)),
|
|
|
|
|
('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
|
|
|
|
|
False, _scalar_div_)),
|
|
|
|
|
('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
|
|
|
|
|
None)),
|
|
|
|
|
('__rtruediv__', _binary_creator_('rtruediv__', 'elementwise_div', True,
|
|
|
|
|
None)),
|
|
|
|
|
('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
|
|
|
|
|
None)),
|
|
|
|
|
('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
|
|
|
|
|
None)),
|
|
|
|
|
('__floordiv__', _binary_creator_('__floordiv__',
|
|
|
|
|
'elementwise_floordiv', False, None)),
|
|
|
|
|
('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
|
|
|
|
|
None)),
|
|
|
|
|
## for logical compare
|
|
|
|
|
('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
|
|
|
|
|
('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
|
|
|
|
|
('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
|
|
|
|
|
('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
|
|
|
|
|
('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
|
|
|
|
|
('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
|
|
|
|
|
('__array_ufunc__', None),
|
|
|
|
|
('sigmoid', _method_creator_('sigmoid', 'name=None')),
|
|
|
|
|
('logsigmoid', _method_creator_('logsigmoid', 'name=None')),
|
|
|
|
|
('exp', _method_creator_('exp', 'name=None')),
|
|
|
|
|
('tanh', _method_creator_('tanh', 'name=None')),
|
|
|
|
|
('atan', _method_creator_('atan', 'name=None')),
|
|
|
|
|
('tanh_shrink', _method_creator_('tanh_shrink', 'name=None')),
|
|
|
|
|
('sqrt', _method_creator_('sqrt', 'name=None')),
|
|
|
|
|
('rsqrt', _method_creator_('rsqrt', 'name=None')),
|
|
|
|
|
('abs', _method_creator_('abs', 'name=None')),
|
|
|
|
|
('ceil', _method_creator_('ceil', 'name=None')),
|
|
|
|
|
('floor', _method_creator_('floor', 'name=None')),
|
|
|
|
|
('cos', _method_creator_('cos', 'name=None')),
|
|
|
|
|
('acos', _method_creator_('acos', 'name=None')),
|
|
|
|
|
('asin', _method_creator_('asin', 'name=None')),
|
|
|
|
|
('sin', _method_creator_('sin', 'name=None')),
|
|
|
|
|
('sinh', _method_creator_('sinh', 'name=None')),
|
|
|
|
|
('cosh', _method_creator_('cosh', 'name=None')),
|
|
|
|
|
('round', _method_creator_('round', 'name=None')),
|
|
|
|
|
('reciprocal', _method_creator_('reciprocal', 'name=None')),
|
|
|
|
|
('square', _method_creator_('square', 'name=None')),
|
|
|
|
|
('softplus', _method_creator_('softplus', 'name=None')),
|
|
|
|
|
('softsign', _method_creator_('softsign', 'name=None')),
|
|
|
|
|
# Type3: Form module 'paddle.tensor' defaultly.
|
|
|
|
|
# It's not a goodway, because it will increase call time.
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
global _already_patch_varbase
|
|
|
|
|
if not _already_patch_varbase:
|
|
|
|
|
for method in varbase_methods:
|
|
|
|
|
method_name = method[0]
|
|
|
|
|
method_impl = method[1]
|
|
|
|
|
setattr(core.VarBase, method_name, method_impl)
|
|
|
|
|
else:
|
|
|
|
|
import paddle.tensor
|
|
|
|
|
for method_name in common_methods:
|
|
|
|
|
if hasattr(core.VarBase, method_name): continue
|
|
|
|
|
method_impl = getattr(paddle.tensor, method_name, None)
|
|
|
|
|
if method_impl: setattr(core.VarBase, method_name, method_impl)
|
|
|
|
|
|
|
|
|
|
_already_patch_varbase = True
|
|
|
|
|