|
|
|
@ -79,10 +79,7 @@ class BoxCoderKernel : public framework::OpKernel<T> {
|
|
|
|
|
output[offset + 3] =
|
|
|
|
|
std::log(std::fabs(target_box_height / prior_box_height));
|
|
|
|
|
if (prior_box_var) {
|
|
|
|
|
int prior_var_offset = 0;
|
|
|
|
|
if (prior_box_var->dims().size() == 2) {
|
|
|
|
|
prior_var_offset = j * len;
|
|
|
|
|
}
|
|
|
|
|
int prior_var_offset = j * len;
|
|
|
|
|
output[offset] /= prior_box_var_data[prior_var_offset];
|
|
|
|
|
output[offset + 1] /= prior_box_var_data[prior_var_offset + 1];
|
|
|
|
|
output[offset + 2] /= prior_box_var_data[prior_var_offset + 2];
|
|
|
|
@ -95,11 +92,12 @@ class BoxCoderKernel : public framework::OpKernel<T> {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
template <int axis, int var_size>
|
|
|
|
|
void DecodeCenterSize(const framework::Tensor* target_box,
|
|
|
|
|
const framework::Tensor* prior_box,
|
|
|
|
|
const framework::Tensor* prior_box_var,
|
|
|
|
|
const bool normalized, const int axis,
|
|
|
|
|
const std::vector<float> variance, T* output) const {
|
|
|
|
|
const bool normalized, std::vector<float> variance,
|
|
|
|
|
T* output) const {
|
|
|
|
|
int64_t row = target_box->dims()[0];
|
|
|
|
|
int64_t col = target_box->dims()[1];
|
|
|
|
|
int64_t len = target_box->dims()[2];
|
|
|
|
@ -107,19 +105,17 @@ class BoxCoderKernel : public framework::OpKernel<T> {
|
|
|
|
|
auto* target_box_data = target_box->data<T>();
|
|
|
|
|
auto* prior_box_data = prior_box->data<T>();
|
|
|
|
|
const T* prior_box_var_data = nullptr;
|
|
|
|
|
if (prior_box_var) prior_box_var_data = prior_box_var->data<T>();
|
|
|
|
|
if (var_size == 2) prior_box_var_data = prior_box_var->data<T>();
|
|
|
|
|
int prior_box_offset = 0;
|
|
|
|
|
T var_data[4] = {1., 1., 1., 1.};
|
|
|
|
|
T* var_ptr = var_data;
|
|
|
|
|
#ifdef PADDLE_WITH_MKLML
|
|
|
|
|
#pragma omp parallel for collapse(2)
|
|
|
|
|
#endif
|
|
|
|
|
for (int64_t i = 0; i < row; ++i) {
|
|
|
|
|
for (int64_t j = 0; j < col; ++j) {
|
|
|
|
|
size_t offset = i * col * len + j * len;
|
|
|
|
|
if (axis == 0) {
|
|
|
|
|
prior_box_offset = j * len;
|
|
|
|
|
} else if (axis == 1) {
|
|
|
|
|
prior_box_offset = i * len;
|
|
|
|
|
}
|
|
|
|
|
prior_box_offset = axis == 0 ? j * len : i * len;
|
|
|
|
|
T prior_box_width = prior_box_data[prior_box_offset + 2] -
|
|
|
|
|
prior_box_data[prior_box_offset] +
|
|
|
|
|
(normalized == false);
|
|
|
|
@ -133,26 +129,18 @@ class BoxCoderKernel : public framework::OpKernel<T> {
|
|
|
|
|
|
|
|
|
|
T target_box_center_x = 0, target_box_center_y = 0;
|
|
|
|
|
T target_box_width = 0, target_box_height = 0;
|
|
|
|
|
T box_var_x = T(1), box_var_y = T(1);
|
|
|
|
|
T box_var_w = T(1), box_var_h = T(1);
|
|
|
|
|
if (prior_box_var) {
|
|
|
|
|
int prior_var_offset = 0;
|
|
|
|
|
if (prior_box_var->dims().size() == 2) {
|
|
|
|
|
if (axis == 0)
|
|
|
|
|
prior_var_offset = j * len;
|
|
|
|
|
else if (axis == 1)
|
|
|
|
|
prior_var_offset = i * len;
|
|
|
|
|
}
|
|
|
|
|
box_var_x = prior_box_var_data[prior_var_offset];
|
|
|
|
|
box_var_y = prior_box_var_data[prior_var_offset + 1];
|
|
|
|
|
box_var_w = prior_box_var_data[prior_var_offset + 2];
|
|
|
|
|
box_var_h = prior_box_var_data[prior_var_offset + 3];
|
|
|
|
|
} else if (!(variance.empty())) {
|
|
|
|
|
box_var_x = static_cast<T>(variance[0]);
|
|
|
|
|
box_var_y = static_cast<T>(variance[1]);
|
|
|
|
|
box_var_w = static_cast<T>(variance[2]);
|
|
|
|
|
box_var_h = static_cast<T>(variance[3]);
|
|
|
|
|
int prior_var_offset = axis == 0 ? j * len : i * len;
|
|
|
|
|
if (var_size == 2) {
|
|
|
|
|
std::memcpy(var_ptr, prior_box_var_data + prior_var_offset,
|
|
|
|
|
4 * sizeof(T));
|
|
|
|
|
} else if (var_size == 1) {
|
|
|
|
|
var_ptr = reinterpret_cast<T*>(variance.data());
|
|
|
|
|
}
|
|
|
|
|
T box_var_x = *var_ptr;
|
|
|
|
|
T box_var_y = *(var_ptr + 1);
|
|
|
|
|
T box_var_w = *(var_ptr + 2);
|
|
|
|
|
T box_var_h = *(var_ptr + 3);
|
|
|
|
|
|
|
|
|
|
target_box_center_x =
|
|
|
|
|
box_var_x * target_box_data[offset] * prior_box_width +
|
|
|
|
|
prior_box_center_x;
|
|
|
|
@ -211,8 +199,31 @@ class BoxCoderKernel : public framework::OpKernel<T> {
|
|
|
|
|
EncodeCenterSize(target_box, prior_box, prior_box_var, normalized,
|
|
|
|
|
variance, output);
|
|
|
|
|
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
|
|
|
|
|
DecodeCenterSize(target_box, prior_box, prior_box_var, normalized, axis,
|
|
|
|
|
variance, output);
|
|
|
|
|
if (prior_box_var) {
|
|
|
|
|
if (axis == 0) {
|
|
|
|
|
DecodeCenterSize<0, 2>(target_box, prior_box, prior_box_var,
|
|
|
|
|
normalized, variance, output);
|
|
|
|
|
} else {
|
|
|
|
|
DecodeCenterSize<1, 2>(target_box, prior_box, prior_box_var,
|
|
|
|
|
normalized, variance, output);
|
|
|
|
|
}
|
|
|
|
|
} else if (!(variance.empty())) {
|
|
|
|
|
if (axis == 0) {
|
|
|
|
|
DecodeCenterSize<0, 1>(target_box, prior_box, prior_box_var,
|
|
|
|
|
normalized, variance, output);
|
|
|
|
|
} else {
|
|
|
|
|
DecodeCenterSize<1, 1>(target_box, prior_box, prior_box_var,
|
|
|
|
|
normalized, variance, output);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
if (axis == 0) {
|
|
|
|
|
DecodeCenterSize<0, 0>(target_box, prior_box, prior_box_var,
|
|
|
|
|
normalized, variance, output);
|
|
|
|
|
} else {
|
|
|
|
|
DecodeCenterSize<1, 0>(target_box, prior_box, prior_box_var,
|
|
|
|
|
normalized, variance, output);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|