|
|
|
@ -18,10 +18,7 @@ if not is_predict:
|
|
|
|
|
# learning_rate=0.1 / 128.0,
|
|
|
|
|
# learning_method=MomentumOptimizer(0.9),
|
|
|
|
|
# regularization=L2Regularization(0.0005 * 128))
|
|
|
|
|
settings(
|
|
|
|
|
batch_size=50,
|
|
|
|
|
learning_rate=0.001,
|
|
|
|
|
learning_method=AdamOptimizer())
|
|
|
|
|
settings(batch_size=50, learning_rate=0.001, learning_method=AdamOptimizer())
|
|
|
|
|
|
|
|
|
|
#######################Network Configuration #############
|
|
|
|
|
|
|
|
|
@ -32,9 +29,15 @@ img = data_layer(name='pixel', size=data_size)
|
|
|
|
|
# small_vgg is predined in trainer_config_helpers.network
|
|
|
|
|
# predict = small_vgg(input_image=img, num_channels=1, num_classes=label_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# light cnn
|
|
|
|
|
def light_cnn(input_image, num_channels, num_classes):
|
|
|
|
|
def __light__(ipt, num_filter=128, times=1, conv_filter_size=3, dropouts=0, num_channels_=None):
|
|
|
|
|
def __light__(ipt,
|
|
|
|
|
num_filter=128,
|
|
|
|
|
times=1,
|
|
|
|
|
conv_filter_size=3,
|
|
|
|
|
dropouts=0,
|
|
|
|
|
num_channels_=None):
|
|
|
|
|
return img_conv_group(
|
|
|
|
|
input=ipt,
|
|
|
|
|
num_channels=num_channels_,
|
|
|
|
@ -53,9 +56,10 @@ def light_cnn(input_image, num_channels, num_classes):
|
|
|
|
|
tmp = __light__(tmp, num_filter=128)
|
|
|
|
|
tmp = __light__(tmp, num_filter=128, conv_filter_size=1)
|
|
|
|
|
|
|
|
|
|
tmp = fc_layer(input=tmp, size = num_classes, act=SoftmaxActivation())
|
|
|
|
|
tmp = fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())
|
|
|
|
|
return tmp
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
predict = light_cnn(input_image=img, num_channels=1, num_classes=label_size)
|
|
|
|
|
|
|
|
|
|
if not is_predict:
|
|
|
|
|