|
|
|
@ -22,6 +22,35 @@ __all__ = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ParamAttr(object):
|
|
|
|
|
"""
|
|
|
|
|
Parameter attributes object. To fine-tuning network training process, user
|
|
|
|
|
can set parameter's attributes to control training details. Such as learning rate,
|
|
|
|
|
regularization, trainable, do_model_average and the method to initialize param.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
name(str): The parameter's name. Default None.
|
|
|
|
|
initializer(Initializer): The method to initial this parameter. Default None.
|
|
|
|
|
learning_rate(float): The parameter's learning rate. The learning rate when
|
|
|
|
|
optimize is :math:`global\_lr * parameter\_lr * scheduler\_factor`.
|
|
|
|
|
Default 1.0.
|
|
|
|
|
regularizer(WeightDecayRegularizer): Regularization factor. Default None.
|
|
|
|
|
trainable(bool): Whether this parameter is trainable. Default True.
|
|
|
|
|
gradient_clip(BaseGradientClipAttr): The method to clip this parameter's
|
|
|
|
|
gradient. Default None.
|
|
|
|
|
do_model_average(bool): Whether this parameter should do model average.
|
|
|
|
|
Default False.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
w_param_attrs = fluid.ParamAttr(name="fc_weight",
|
|
|
|
|
learning_rate=0.5,
|
|
|
|
|
regularizer=fluid.L2Decay(1.0),
|
|
|
|
|
trainable=True)
|
|
|
|
|
y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
|
name=None,
|
|
|
|
|
initializer=None,
|
|
|
|
@ -29,7 +58,7 @@ class ParamAttr(object):
|
|
|
|
|
regularizer=None,
|
|
|
|
|
trainable=True,
|
|
|
|
|
gradient_clip=None,
|
|
|
|
|
do_model_average=None):
|
|
|
|
|
do_model_average=False):
|
|
|
|
|
self.name = name
|
|
|
|
|
self.initializer = initializer
|
|
|
|
|
self.learning_rate = learning_rate
|
|
|
|
@ -39,6 +68,10 @@ class ParamAttr(object):
|
|
|
|
|
self.model_average = do_model_average
|
|
|
|
|
|
|
|
|
|
def set_default_initializer(self, initializer):
|
|
|
|
|
"""
|
|
|
|
|
Set the default initializer, the initializer should be Constant,
|
|
|
|
|
Uniform, Normal, Xavier, MSRA.
|
|
|
|
|
"""
|
|
|
|
|
if initializer is None:
|
|
|
|
|
if self.initializer is None:
|
|
|
|
|
raise ValueError("ParamAttr.initializer is not set")
|
|
|
|
@ -50,13 +83,33 @@ class ParamAttr(object):
|
|
|
|
|
self.initializer = initializer
|
|
|
|
|
|
|
|
|
|
def set_default_param_initializer(self):
|
|
|
|
|
"""
|
|
|
|
|
Set the default initializer for the parameter with Xavier.
|
|
|
|
|
"""
|
|
|
|
|
self.set_default_initializer(Xavier())
|
|
|
|
|
|
|
|
|
|
def set_default_bias_initializer(self):
|
|
|
|
|
"""
|
|
|
|
|
Set the default initializer for the bias with Constant(0.0).
|
|
|
|
|
"""
|
|
|
|
|
self.set_default_initializer(Constant(0.0))
|
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def to_attr(arg):
|
|
|
|
|
"""
|
|
|
|
|
Create ParamAttr[s].
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
arg: Arguments to initialize ParamAttr[s]. arg's type can be
|
|
|
|
|
str, Initializer, float, WeightDecayRegularizer, BaseGradientClipAttr,
|
|
|
|
|
bool, ParamAttr, or a list of above type.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
ParamAttr[s]: ParamAttr[s] initialized with arg.
|
|
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
|
arg can not initialize a ParamAttr.
|
|
|
|
|
"""
|
|
|
|
|
if arg is None:
|
|
|
|
|
return ParamAttr()
|
|
|
|
|
elif isinstance(arg, list) or isinstance(arg, tuple):
|
|
|
|
@ -75,6 +128,15 @@ class ParamAttr(object):
|
|
|
|
|
raise TypeError("{0} cast to ParamAttr".format(type(arg)))
|
|
|
|
|
|
|
|
|
|
def to_kwargs(self, with_initializer=False):
|
|
|
|
|
"""
|
|
|
|
|
Returns the attributes of this parameter.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
with_initializer(bool): Whether to add initializer attr.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Parameter attributes(map): The attributes of this parameter.
|
|
|
|
|
"""
|
|
|
|
|
kwargs = {
|
|
|
|
|
'name': self.name,
|
|
|
|
|
'optimize_attr': {
|
|
|
|
@ -92,9 +154,27 @@ class ParamAttr(object):
|
|
|
|
|
|
|
|
|
|
class WeightNormParamAttr(ParamAttr):
|
|
|
|
|
"""
|
|
|
|
|
Used for weight normalization. Any field in ParamAttr can also be set here.
|
|
|
|
|
Besides, an extra field dim can be set to indicate the dimension except
|
|
|
|
|
which to normalize.
|
|
|
|
|
Used for weight Norm. Weight Norm is a reparameterization of the weight vectors
|
|
|
|
|
in a neural network that decouples the length of those weight vectors from
|
|
|
|
|
their direction. Weight Norm has been implemented as discussed in this
|
|
|
|
|
paper: `Weight Normalization: A Simple Reparameterization to Accelerate
|
|
|
|
|
Training of Deep Neural Networks
|
|
|
|
|
<https://arxiv.org/pdf/1602.07868.pdf>`_.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
dim(list): The parameter's name. Default None.
|
|
|
|
|
kwargs: Any field in ParamAttr. Default None.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
data = fluid.layers.data(name="data", shape=[3, 32, 32], dtype="float32")
|
|
|
|
|
fc = fluid.layers.fc(input=data,
|
|
|
|
|
size=1000,
|
|
|
|
|
param_attr=WeightNormParamAttr(
|
|
|
|
|
dim=None,
|
|
|
|
|
name='weight_norm_param'))
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
# List to record the parameters reparameterized by weight normalization.
|
|
|
|
|
# If these parameters are treated as Variable rather than Parameter,
|
|
|
|
|