|
|
|
@ -31,30 +31,38 @@ template <typename Place, typename T>
|
|
|
|
|
class CosSimKernel : public framework::OpKernel {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
auto* input_x = context.Input<Tensor>("X");
|
|
|
|
|
auto* input_y = context.Input<Tensor>("Y");
|
|
|
|
|
auto* output_z = context.Output<Tensor>("Out");
|
|
|
|
|
auto* output_x_norm = context.Output<Tensor>("XNorm");
|
|
|
|
|
auto* output_y_norm = context.Output<Tensor>("YNorm");
|
|
|
|
|
// get Tensor
|
|
|
|
|
auto* in_x = context.Input<Tensor>("X");
|
|
|
|
|
auto* in_y = context.Input<Tensor>("Y");
|
|
|
|
|
auto* out_z = context.Output<Tensor>("Out");
|
|
|
|
|
auto* out_x_norm = context.Output<Tensor>("XNorm");
|
|
|
|
|
auto* out_y_norm = context.Output<Tensor>("YNorm");
|
|
|
|
|
out_z->mutable_data<T>(context.GetPlace());
|
|
|
|
|
out_x_norm->mutable_data<T>(context.GetPlace());
|
|
|
|
|
out_y_norm->mutable_data<T>(context.GetPlace());
|
|
|
|
|
|
|
|
|
|
output_z->mutable_data<T>(context.GetPlace());
|
|
|
|
|
output_x_norm->mutable_data<T>(context.GetPlace());
|
|
|
|
|
output_y_norm->mutable_data<T>(context.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto dims = input_x->dims();
|
|
|
|
|
int64_t size = input_x->numel();
|
|
|
|
|
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
|
|
|
|
|
auto x = EigenMatrix<T>::From(*input_x, new_dims);
|
|
|
|
|
auto y = EigenMatrix<T>::From(*input_y, new_dims);
|
|
|
|
|
auto z = EigenVector<T>::Flatten(*output_z);
|
|
|
|
|
auto x_norm = EigenVector<T>::Flatten(*output_x_norm);
|
|
|
|
|
auto y_norm = EigenVector<T>::Flatten(*output_y_norm);
|
|
|
|
|
// convert Tensor to Eigen Tensor
|
|
|
|
|
int rows_x = in_x->dims()[0];
|
|
|
|
|
int rows_y = in_y->dims()[0];
|
|
|
|
|
auto x = EigenMatrix<T>::Reshape(*in_x, 1);
|
|
|
|
|
auto y = EigenMatrix<T>::Reshape(*in_y, 1);
|
|
|
|
|
auto z = EigenVector<T>::Flatten(*out_z);
|
|
|
|
|
auto x_norm = EigenVector<T>::Flatten(*out_x_norm);
|
|
|
|
|
auto y_norm = EigenVector<T>::Flatten(*out_y_norm);
|
|
|
|
|
|
|
|
|
|
// compute
|
|
|
|
|
auto place = context.GetEigenDevice<Place>();
|
|
|
|
|
auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
|
|
|
|
|
x_norm.device(place) = x.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
|
|
|
|
|
y_norm.device(place) = y.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
|
|
|
|
|
z.device(place) = xy / x_norm / y_norm;
|
|
|
|
|
auto row_along = Eigen::array<int, 1>({{1}});
|
|
|
|
|
x_norm.device(place) = x.square().sum(row_along).sqrt();
|
|
|
|
|
y_norm.device(place) = y.square().sum(row_along).sqrt();
|
|
|
|
|
if (rows_x == rows_y) {
|
|
|
|
|
auto xy = (x * y).sum(Eigen::array<int, 1>({1}));
|
|
|
|
|
z.device(place) = xy / x_norm / y_norm;
|
|
|
|
|
} else {
|
|
|
|
|
Eigen::DSizes<int, 2> bcast(rows_x, 1);
|
|
|
|
|
auto xy = (x * y.broadcast(bcast)).sum(row_along);
|
|
|
|
|
z.device(place) = xy / x_norm / y_norm.broadcast(bcast);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
@ -62,43 +70,72 @@ template <typename Place, typename T>
|
|
|
|
|
class CosSimGradKernel : public framework::OpKernel {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
auto* input_x = context.Input<Tensor>("X");
|
|
|
|
|
auto* input_y = context.Input<Tensor>("Y");
|
|
|
|
|
auto* input_z = context.Input<Tensor>("Out");
|
|
|
|
|
auto* input_x_norm = context.Input<Tensor>("XNorm");
|
|
|
|
|
auto* input_y_norm = context.Input<Tensor>("YNorm");
|
|
|
|
|
auto* output_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
auto* output_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
|
|
|
|
|
auto* input_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
// get Tensor
|
|
|
|
|
auto* in_x = context.Input<Tensor>("X");
|
|
|
|
|
auto* in_y = context.Input<Tensor>("Y");
|
|
|
|
|
auto* in_z = context.Input<Tensor>("Out");
|
|
|
|
|
auto* in_x_norm = context.Input<Tensor>("XNorm");
|
|
|
|
|
auto* in_y_norm = context.Input<Tensor>("YNorm");
|
|
|
|
|
auto* out_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
auto* out_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
|
|
|
|
|
auto* in_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
|
|
|
|
|
auto dims = input_x->dims();
|
|
|
|
|
int64_t size = input_x->numel();
|
|
|
|
|
auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
|
|
|
|
|
auto x = EigenMatrix<T>::From(*input_x, new_dims);
|
|
|
|
|
auto y = EigenMatrix<T>::From(*input_y, new_dims);
|
|
|
|
|
auto z = EigenMatrix<T>::From(*input_z);
|
|
|
|
|
auto x_norm = EigenMatrix<T>::From(*input_x_norm);
|
|
|
|
|
auto y_norm = EigenMatrix<T>::From(*input_y_norm);
|
|
|
|
|
auto dz = EigenMatrix<T>::From(*input_grad_z);
|
|
|
|
|
// convert Tensor to Eigen Tensor
|
|
|
|
|
auto x = EigenMatrix<T>::Reshape(*in_x, 1);
|
|
|
|
|
auto y = EigenMatrix<T>::Reshape(*in_y, 1);
|
|
|
|
|
auto z = EigenMatrix<T>::Reshape(*in_z, 1);
|
|
|
|
|
auto x_norm = EigenMatrix<T>::Reshape(*in_x_norm, 1);
|
|
|
|
|
auto y_norm = EigenMatrix<T>::Reshape(*in_y_norm, 1);
|
|
|
|
|
auto dz = EigenMatrix<T>::Reshape(*in_grad_z, 1);
|
|
|
|
|
|
|
|
|
|
Eigen::DSizes<int, 2> bcast(1, new_dims[1]);
|
|
|
|
|
auto z_bcast = z.broadcast(bcast);
|
|
|
|
|
auto dz_bcast = dz.broadcast(bcast);
|
|
|
|
|
// compute gradident
|
|
|
|
|
int rows_x = in_x->dims()[0];
|
|
|
|
|
int rows_y = in_y->dims()[0];
|
|
|
|
|
int cols = framework::product(in_x->dims()) / rows_x;
|
|
|
|
|
Eigen::DSizes<int, 2> bcast_cols(1, cols);
|
|
|
|
|
auto z_bcast = z.broadcast(bcast_cols);
|
|
|
|
|
auto dz_bcast = dz.broadcast(bcast_cols);
|
|
|
|
|
auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols);
|
|
|
|
|
auto place = context.GetEigenDevice<Place>();
|
|
|
|
|
auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast);
|
|
|
|
|
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast);
|
|
|
|
|
auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast);
|
|
|
|
|
if (output_grad_x) {
|
|
|
|
|
output_grad_x->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto dx = EigenMatrix<T>::From(*output_grad_x, new_dims);
|
|
|
|
|
dx.device(place) =
|
|
|
|
|
dz_bcast * (y / norm_prod_bcast - z_bcast * x / x_snorm_bcast);
|
|
|
|
|
}
|
|
|
|
|
if (output_grad_y) {
|
|
|
|
|
output_grad_y->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto dy = EigenMatrix<T>::From(*output_grad_y, new_dims);
|
|
|
|
|
dy.device(place) =
|
|
|
|
|
dz_bcast * (x / norm_prod_bcast - z_bcast * y / y_snorm_bcast);
|
|
|
|
|
if (rows_x == rows_y) {
|
|
|
|
|
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols);
|
|
|
|
|
auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols);
|
|
|
|
|
// compute dx
|
|
|
|
|
if (out_grad_x) {
|
|
|
|
|
out_grad_x->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
|
|
|
|
|
auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
|
|
|
|
|
dx.device(place) = dz_bcast * grad;
|
|
|
|
|
}
|
|
|
|
|
// compute dy
|
|
|
|
|
if (out_grad_y) {
|
|
|
|
|
out_grad_y->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
|
|
|
|
|
auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast;
|
|
|
|
|
dy.device(place) = dz_bcast * grad;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
Eigen::DSizes<int, 2> bcast_rows(rows_x, 1);
|
|
|
|
|
Eigen::DSizes<int, 2> bcast_rows_cols(rows_x, cols);
|
|
|
|
|
auto y_bcast = y.broadcast(bcast_rows);
|
|
|
|
|
auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols);
|
|
|
|
|
auto norm_prod_bcast = (x_norm * y_norm.eval().broadcast(bcast_rows))
|
|
|
|
|
.eval()
|
|
|
|
|
.broadcast(bcast_cols);
|
|
|
|
|
// compute dx
|
|
|
|
|
if (out_grad_x) {
|
|
|
|
|
out_grad_x->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto dx = EigenMatrix<T>::Reshape(*out_grad_x, 1);
|
|
|
|
|
auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast;
|
|
|
|
|
dx.device(place) = dz_bcast * grad;
|
|
|
|
|
}
|
|
|
|
|
// compute dy
|
|
|
|
|
if (out_grad_y) {
|
|
|
|
|
out_grad_y->mutable_data<T>(context.GetPlace());
|
|
|
|
|
auto dy = EigenMatrix<T>::Reshape(*out_grad_y, 1);
|
|
|
|
|
auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast;
|
|
|
|
|
dy.device(place) = (dz_bcast * grad).sum(Eigen::array<int, 1>({0}));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|