|
|
|
@ -42,8 +42,8 @@ __global__ void LabelErasedIdx(const T* in_dat, const int in_len,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
__global__ void GetOutLod(const T* num_erased, const int* in_lod,
|
|
|
|
|
const int lod_len, int* out_lod0) {
|
|
|
|
|
__global__ void GetOutLod(const T* num_erased, const size_t* in_lod,
|
|
|
|
|
const int lod_len, size_t* out_lod0) {
|
|
|
|
|
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
if (index < lod_len) {
|
|
|
|
|
out_lod0[index] = in_lod[index] - num_erased[in_lod[index]];
|
|
|
|
@ -61,6 +61,26 @@ __global__ void SetOutput(const T* in_dat, const int in_len,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T, typename Vector>
|
|
|
|
|
thrust::device_vector<T> set_device_vector(Vector& vector) {
|
|
|
|
|
thrust::host_vector<T> host_vec(vector.size());
|
|
|
|
|
for (size_t i = 0; i < vector.size(); ++i) {
|
|
|
|
|
host_vec[i] = vector[i];
|
|
|
|
|
}
|
|
|
|
|
thrust::device_vector<T> dev_vec = host_vec;
|
|
|
|
|
return dev_vec;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
std::vector<T> get_std_vector(thrust::device_vector<T>& dev_vec) {
|
|
|
|
|
thrust::host_vector<T> host_vec = dev_vec;
|
|
|
|
|
std::vector<T> std_vec(host_vec.size(), 0);
|
|
|
|
|
for (size_t i = 0; i < host_vec.size(); ++i) {
|
|
|
|
|
std_vec[i] = host_vec[i];
|
|
|
|
|
}
|
|
|
|
|
return std_vec;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class SequenceEraseOpCUDAKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
@ -73,52 +93,45 @@ class SequenceEraseOpCUDAKernel : public framework::OpKernel<T> {
|
|
|
|
|
PADDLE_ENFORCE_EQ(lod[0].back(), (size_t)in->numel(),
|
|
|
|
|
"The actual size mismatches with the LoD information.");
|
|
|
|
|
auto tokens = ctx.Attr<std::vector<T>>("tokens");
|
|
|
|
|
auto tokens_len = tokens.size();
|
|
|
|
|
auto in_len = in->numel();
|
|
|
|
|
auto in_dat = in->data<T>();
|
|
|
|
|
auto lod0 = lod[0];
|
|
|
|
|
// Copy tokens to GPU
|
|
|
|
|
thrust::device_vector<T> dev_tokens =
|
|
|
|
|
set_device_vector<T, std::vector<T>>(tokens);
|
|
|
|
|
T* dev_tokens_ptr = thrust::raw_pointer_cast(dev_tokens.data());
|
|
|
|
|
|
|
|
|
|
thrust::host_vector<T> host_tokens(tokens_len);
|
|
|
|
|
for (size_t i = 0; i < tokens.size(); ++i) {
|
|
|
|
|
host_tokens[i] = tokens[i];
|
|
|
|
|
}
|
|
|
|
|
thrust::device_vector<T> dev_tokens = host_tokens;
|
|
|
|
|
// Count number of elements to be erased
|
|
|
|
|
thrust::device_vector<int> num_erased(in_len + 1);
|
|
|
|
|
|
|
|
|
|
T* dev_tokens_ptr = thrust::raw_pointer_cast(dev_tokens.data());
|
|
|
|
|
int* num_erased_ptr = thrust::raw_pointer_cast(num_erased.data());
|
|
|
|
|
|
|
|
|
|
auto stream = ctx.cuda_device_context().stream();
|
|
|
|
|
LabelErasedIdx<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
|
|
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
|
|
|
in_dat, in_len, dev_tokens_ptr, tokens_len, num_erased_ptr);
|
|
|
|
|
in_dat, in_len, dev_tokens_ptr, tokens.size(), num_erased_ptr);
|
|
|
|
|
thrust::inclusive_scan(num_erased.begin() + 1, num_erased.end(),
|
|
|
|
|
num_erased.begin() + 1);
|
|
|
|
|
|
|
|
|
|
// Calc LoD
|
|
|
|
|
// Copy LoD to GPU
|
|
|
|
|
auto lod0 = lod[0];
|
|
|
|
|
auto lod_len = lod0.size();
|
|
|
|
|
thrust::host_vector<int> host_lod(lod_len);
|
|
|
|
|
for (size_t i = 0; i < lod_len; ++i) {
|
|
|
|
|
host_lod[i] = lod0[i];
|
|
|
|
|
}
|
|
|
|
|
thrust::device_vector<int> dev_in_lod = host_lod;
|
|
|
|
|
thrust::device_vector<int> dev_out_lod(lod_len);
|
|
|
|
|
int* dev_in_lod_ptr = thrust::raw_pointer_cast(dev_in_lod.data());
|
|
|
|
|
int* dev_out_lod_ptr = thrust::raw_pointer_cast(dev_out_lod.data());
|
|
|
|
|
thrust::device_vector<size_t> dev_in_lod =
|
|
|
|
|
set_device_vector<size_t, paddle::framework::Vector<size_t>>(lod0);
|
|
|
|
|
size_t* dev_in_lod_ptr = thrust::raw_pointer_cast(dev_in_lod.data());
|
|
|
|
|
|
|
|
|
|
// Calc output LoD
|
|
|
|
|
thrust::device_vector<size_t> dev_out_lod(lod_len);
|
|
|
|
|
size_t* dev_out_lod_ptr = thrust::raw_pointer_cast(dev_out_lod.data());
|
|
|
|
|
GetOutLod<<<(lod_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
|
|
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(
|
|
|
|
|
num_erased_ptr, dev_in_lod_ptr, lod_len, dev_out_lod_ptr);
|
|
|
|
|
thrust::host_vector<int> host_out_lod = dev_out_lod;
|
|
|
|
|
std::vector<int> out_lod0(lod_len, 0);
|
|
|
|
|
for (size_t i = 0; i < lod_len; i++) {
|
|
|
|
|
out_lod0[i] = host_out_lod[i];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Set LoD for output
|
|
|
|
|
std::vector<size_t> out_lod0 = get_std_vector<size_t>(dev_out_lod);
|
|
|
|
|
framework::LoD out_lod;
|
|
|
|
|
out_lod.push_back(out_lod0);
|
|
|
|
|
out->set_lod(out_lod);
|
|
|
|
|
|
|
|
|
|
// Set output
|
|
|
|
|
out->Resize({out_lod0.back(), 1});
|
|
|
|
|
out->Resize({static_cast<int64_t>(out_lod0.back()), 1});
|
|
|
|
|
auto out_dat = out->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
SetOutput<<<(in_len - 1) / PADDLE_CUDA_NUM_THREADS + 1,
|
|
|
|
|
PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_dat, in_len,
|
|
|
|
|