parent
							
								
									85b398f171
								
							
						
					
					
						commit
						d31c92a2cd
					
				@ -0,0 +1,53 @@
 | 
				
			||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
from __future__ import print_function
 | 
				
			||||
 | 
				
			||||
import unittest
 | 
				
			||||
import numpy as np
 | 
				
			||||
import sys
 | 
				
			||||
import paddle.fluid.core as core
 | 
				
			||||
import paddle.fluid as fluid
 | 
				
			||||
import paddle.fluid.layers as layers
 | 
				
			||||
from paddle.fluid.executor import Executor
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
class TestMseLoss(unittest.TestCase):
 | 
				
			||||
    def test_mse_loss(self):
 | 
				
			||||
        input_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")
 | 
				
			||||
        label_val = np.random.uniform(0.1, 0.5, (2, 3)).astype("float32")
 | 
				
			||||
 | 
				
			||||
        sub = input_val - label_val
 | 
				
			||||
        np_result = np.mean(sub * sub)
 | 
				
			||||
 | 
				
			||||
        input_var = layers.create_tensor(dtype="float32", name="input")
 | 
				
			||||
        label_var = layers.create_tensor(dtype="float32", name="label")
 | 
				
			||||
 | 
				
			||||
        layers.assign(input=input_val, output=input_var)
 | 
				
			||||
        layers.assign(input=label_val, output=label_var)
 | 
				
			||||
        output = layers.mse_loss(input=input_var, label=label_var)
 | 
				
			||||
        for use_cuda in ([False, True]
 | 
				
			||||
                         if core.is_compiled_with_cuda() else [False]):
 | 
				
			||||
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
 | 
				
			||||
            exe = Executor(place)
 | 
				
			||||
            result = exe.run(fluid.default_main_program(),
 | 
				
			||||
                             feed={"input": input_var,
 | 
				
			||||
                                   "label": label_var},
 | 
				
			||||
                             fetch_list=[output])
 | 
				
			||||
 | 
				
			||||
            self.assertTrue(np.isclose(np_result, result).all())
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
if __name__ == "__main__":
 | 
				
			||||
    unittest.main()
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue