Implementing the Decayed Adagrad optimizer operator (#4645)
* Implementing the DecayedAdagrad optimizer step operator * implementing DecayedAdagrad operator * remove file * small fixrevert-4814-Add_sequence_project_op
parent
2daba04042
commit
d3b8bffaf1
@ -0,0 +1,96 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/decayed_adagrad_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class DecayedAdagradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
||||
"Input(Param) of DecayedAdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
||||
"Input(Grad) of DecayedAdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Moment"),
|
||||
"Input(Moment) of DecayedAdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasInput("LearningRate"),
|
||||
"Input(LearningRate) of DecayedAdagradOp should not be null.");
|
||||
|
||||
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
||||
"Output(ParamOut) of DecayedAdagradOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
|
||||
"Output(MomentOut) of DecayedAdagradOp should not be null.");
|
||||
|
||||
auto lr_dims = ctx->GetInputDim("LearningRate");
|
||||
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
|
||||
"LearningRate should have one element");
|
||||
auto param_dims = ctx->GetInputDim("Param");
|
||||
PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Grad"),
|
||||
"Param and Grad input of DecayedAdagradOp should have "
|
||||
"the same dimension.");
|
||||
PADDLE_ENFORCE_EQ(param_dims, ctx->GetInputDim("Moment"),
|
||||
"Param and Moment input of DecayedAdagradOp should have "
|
||||
"the same dimension.");
|
||||
|
||||
ctx->SetOutputDim("ParamOut", param_dims);
|
||||
ctx->SetOutputDim("MomentOut", param_dims);
|
||||
}
|
||||
};
|
||||
|
||||
class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
DecayedAdagradOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Param", "(Tensor) Input parameter");
|
||||
AddInput("Grad", "(Tensor) Input gradient");
|
||||
AddInput("Moment", "(Tensor) Second moment");
|
||||
AddInput("LearningRate", "(Tensor) Learning rate");
|
||||
|
||||
AddOutput("ParamOut", "(Tensor) Output parameter");
|
||||
AddOutput("MomentOut", "(Tensor) Output second moment");
|
||||
|
||||
AddAttr<float>("decay",
|
||||
"(float, default 0.95) "
|
||||
"Discounting factor for coming gradient")
|
||||
.SetDefault(0.95);
|
||||
AddAttr<float>("epsilon",
|
||||
"(float, default 1.0e-6) "
|
||||
"Constant for numerical stability")
|
||||
.SetDefault(1.0e-6f);
|
||||
AddComment(R"DOC(
|
||||
|
||||
Decayed Adagrad
|
||||
|
||||
moment_out = decay * moment + (1 - decay) * grad * grad
|
||||
param_out = param - learning_rate * grad / (sqrt(moment_out) + epsilon)
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(decayed_adagrad, ops::DecayedAdagradOp,
|
||||
ops::DecayedAdagradOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
decayed_adagrad,
|
||||
ops::DecayedAdagradOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,21 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/decayed_adagrad_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
decayed_adagrad,
|
||||
ops::DecayedAdagradOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,56 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T>
|
||||
class DecayedAdagradOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
|
||||
auto moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
|
||||
|
||||
param_out_tensor->mutable_data<T>(ctx.GetPlace());
|
||||
moment_out_tensor->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
float decay = ctx.Attr<float>("decay");
|
||||
float epsilon = ctx.Attr<float>("epsilon");
|
||||
|
||||
auto param = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("Param"));
|
||||
auto grad = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("Grad"));
|
||||
auto moment = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("Moment"));
|
||||
auto lr = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("LearningRate"));
|
||||
|
||||
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
|
||||
auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
|
||||
auto place = ctx.GetEigenDevice<Place>();
|
||||
|
||||
moment_out.device(place) = decay * moment + (1 - decay) * grad * grad;
|
||||
Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
|
||||
param_out.device(place) =
|
||||
param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,71 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestDecayedAdagradOp1(OpTest):
|
||||
''' Test DecayedAdagrad operator with explicit attributes
|
||||
'''
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "decayed_adagrad"
|
||||
|
||||
param = np.random.random((123, 321)).astype("float32")
|
||||
grad = np.random.random((123, 321)).astype("float32")
|
||||
moment = np.zeros((123, 321)).astype("float32")
|
||||
lr = 0.01
|
||||
decay = 0.80
|
||||
epsilon = 1e-8
|
||||
|
||||
self.inputs = {
|
||||
'Param': param,
|
||||
'Grad': grad,
|
||||
'Moment': moment,
|
||||
'LearningRate': np.array([lr]).astype("float32")
|
||||
}
|
||||
|
||||
self.attrs = {'decay': decay, 'epsilon': epsilon}
|
||||
|
||||
moment_out = decay * moment + (1 - decay) * grad * grad
|
||||
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
|
||||
|
||||
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestDecayedAdagradOp2(OpTest):
|
||||
''' Test DecayedAdagrad operator with default attributes
|
||||
'''
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "decayed_adagrad"
|
||||
|
||||
param = np.random.random((123, 321)).astype("float32")
|
||||
grad = np.random.random((123, 321)).astype("float32")
|
||||
moment = np.zeros((123, 321)).astype("float32")
|
||||
lr = 0.01
|
||||
decay = 0.95
|
||||
epsilon = 1e-6
|
||||
|
||||
self.inputs = {
|
||||
'Param': param,
|
||||
'Grad': grad,
|
||||
'Moment': moment,
|
||||
'LearningRate': np.array([lr]).astype("float32")
|
||||
}
|
||||
|
||||
self.attrs = {'decay': decay, 'epsilon': epsilon}
|
||||
|
||||
moment_out = decay * moment + (1 - decay) * grad * grad
|
||||
param_out = param - lr * grad / (np.sqrt(moment_out) + epsilon)
|
||||
|
||||
self.outputs = {'ParamOut': param_out, 'MomentOut': moment_out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue