Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into cudnn_wrapper
commit
d4087efc99
@ -0,0 +1,244 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Conv3DLayer.h"
|
||||
#include "paddle/utils/Logging.h"
|
||||
#include "paddle/utils/Stat.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
REGISTER_LAYER(conv3d, Conv3DLayer);
|
||||
|
||||
bool Conv3DLayer::init(const LayerMap &layerMap,
|
||||
const ParameterMap ¶meterMap) {
|
||||
if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
|
||||
int index = 0;
|
||||
for (auto &inputConfig : config_.inputs()) {
|
||||
const ConvConfig &conf = inputConfig.conv_conf();
|
||||
M_.push_back(numFilters_ / conf.groups());
|
||||
K_.push_back(filterPixels_[index] * filterChannels_[index]);
|
||||
|
||||
// create a new weight
|
||||
size_t height, width;
|
||||
width = filterPixels_[index] * filterChannels_[index];
|
||||
height = numFilters_;
|
||||
CHECK_EQ(parameters_[index]->getSize(), width * height);
|
||||
Weight *w = new Weight(height, width, parameters_[index]);
|
||||
weights_.emplace_back(w);
|
||||
++index;
|
||||
}
|
||||
if (biasParameter_.get()) {
|
||||
if (sharedBiases_) {
|
||||
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
|
||||
biases_ =
|
||||
std::unique_ptr<Weight>(new Weight(1, numFilters_, biasParameter_));
|
||||
} else {
|
||||
biases_ =
|
||||
std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t Conv3DLayer::getSize() {
|
||||
CHECK_NE(inputLayers_.size(), 0UL);
|
||||
outputH_.clear();
|
||||
outputW_.clear();
|
||||
outputD_.clear();
|
||||
N_.clear();
|
||||
size_t layerSize = 0;
|
||||
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
||||
outputW_.push_back(outputSize(
|
||||
imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
|
||||
outputH_.push_back(outputSize(
|
||||
imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
|
||||
outputD_.push_back(outputSize(
|
||||
imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
|
||||
|
||||
N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
|
||||
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
|
||||
layerSize += N_[i] * numFilters_;
|
||||
}
|
||||
getOutput().setFrameHeight(outputH_[0]);
|
||||
getOutput().setFrameWidth(outputW_[0]);
|
||||
getOutput().setFrameDepth(outputD_[0]);
|
||||
return layerSize;
|
||||
}
|
||||
|
||||
void Conv3DLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
int outWidth = getSize();
|
||||
resetOutput(batchSize, outWidth);
|
||||
|
||||
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
||||
REGISTER_TIMER_INFO("FwdConv3D", getName().c_str());
|
||||
const MatrixPtr &inMat = getInputValue(i);
|
||||
const MatrixPtr &outMat = getOutputValue();
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
MatrixPtr wMat = weights_[i]->getW();
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
|
||||
channels_[i],
|
||||
imgSizeD_[i],
|
||||
imgSizeH_[i],
|
||||
imgSizeW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i]);
|
||||
|
||||
real *outData = outMat->getData() + n * outMat->getStride();
|
||||
MatrixPtr outMatSub =
|
||||
Matrix::create(outData, groups_[i] * M, N, false, useGpu_);
|
||||
for (int g = 0; g < groups_[i]; g++) {
|
||||
MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
|
||||
MatrixPtr in = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr out = outMatSub->subMatrix(g * M, M);
|
||||
out->mul(*wMatSub, *in, 1.0, 1.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (nullptr != this->biasParameter_) {
|
||||
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
|
||||
this->addBias();
|
||||
}
|
||||
forwardActivation();
|
||||
}
|
||||
|
||||
void Conv3DLayer::backward(const UpdateCallback &callback) {
|
||||
backwardActivation();
|
||||
|
||||
if (biases_ && biases_->getWGrad()) {
|
||||
bpropBiases();
|
||||
biases_->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
|
||||
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
||||
REGISTER_TIMER_INFO("BwdConv3D", getName().c_str());
|
||||
if (weights_[i]->getWGrad()) {
|
||||
bpropWeights(i);
|
||||
}
|
||||
if (getInputGrad(i)) {
|
||||
bpropData(i);
|
||||
}
|
||||
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
|
||||
weights_[i]->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::bpropWeights(int i) {
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
const MatrixPtr &inMat = getInputValue(i);
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
MatrixPtr wGradMat = weights_[i]->getWGrad();
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
|
||||
channels_[i],
|
||||
imgSizeD_[i],
|
||||
imgSizeH_[i],
|
||||
imgSizeW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i]);
|
||||
|
||||
real *outGradData =
|
||||
getOutputGrad()->getData() + n * getOutputGrad()->getStride();
|
||||
MatrixPtr outGradSub =
|
||||
Matrix::create(outGradData, groups_[i] * M, N, false, useGpu_);
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr inMatSub = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr outG = outGradSub->subMatrix(g * M, M);
|
||||
MatrixPtr wGradSub = wGradMat->subMatrix(g * M, M);
|
||||
wGradSub->mul(*outG, *(inMatSub->getTranspose()), 1.0, 1.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::bpropData(int i) {
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
MatrixPtr wMat = weights_[i]->getW();
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
real *outGradData =
|
||||
getOutputGrad()->getData() + n * getOutputGrad()->getStride();
|
||||
real *preGradData =
|
||||
getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
|
||||
MatrixPtr outGradSub =
|
||||
Matrix::create(outGradData, M * groups_[i], N, false, useGpu_);
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
|
||||
MatrixPtr outG = outGradSub->subMatrix(g * M, M);
|
||||
MatrixPtr inGradMatSub = colBuf_->subMatrix(g * K, K);
|
||||
inGradMatSub->mul(*(wMatSub->getTranspose()), *outG, 1.0, 0.0);
|
||||
}
|
||||
colBuf_->col2Vol(preGradData,
|
||||
channels_[i],
|
||||
imgSizeD_[i],
|
||||
imgSizeH_[i],
|
||||
imgSizeW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i],
|
||||
1.0,
|
||||
1.0);
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::bpropBiases() {
|
||||
MatrixPtr outGradMat = getOutputGrad();
|
||||
if (this->sharedBiases_) {
|
||||
biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
|
||||
} else {
|
||||
biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
void Conv3DLayer::addBias() {
|
||||
MatrixPtr outMat = getOutputValue();
|
||||
if (this->sharedBiases_) {
|
||||
outMat->addSharedBias(*(biases_->getW()), 1.0f);
|
||||
} else {
|
||||
outMat->addBias(*(biases_->getW()), 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
||||
@ -0,0 +1,51 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <vector>
|
||||
#include "ConvBaseLayer.h"
|
||||
#include "paddle/math/MathUtils.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* @brief A subclass of convolution layer.
|
||||
* This layer expands input and use matrix multiplication to
|
||||
* calculate convolution operation.
|
||||
*/
|
||||
class Conv3DLayer : public ConvBaseLayer {
|
||||
public:
|
||||
explicit Conv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
|
||||
~Conv3DLayer() {}
|
||||
|
||||
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
||||
|
||||
void forward(PassType passType);
|
||||
void addBias();
|
||||
void backward(const UpdateCallback& callback);
|
||||
void bpropBiases();
|
||||
void bpropData(int i);
|
||||
void bpropWeights(int i);
|
||||
size_t getSize();
|
||||
|
||||
protected:
|
||||
// Figure out the dimensions for individual gemms.
|
||||
IntV M_; /// numFilters_ / filter_group_;
|
||||
IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_
|
||||
IntV K_; /// outputD_ * outputH_ * outputW_
|
||||
MatrixPtr colBuf_;
|
||||
};
|
||||
|
||||
} // namespace paddle
|
||||
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,135 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "CrossEntropyOverBeam.h"
|
||||
#include "Layer.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/* This struct stores the beams in all search steps for a single sequence. */
|
||||
struct BeamExpansion {
|
||||
std::vector<MatrixPtr> scores;
|
||||
std::vector<IVectorPtr> seqInfo;
|
||||
|
||||
std::vector<MatrixPtr> candidateIds;
|
||||
std::vector<int> gold;
|
||||
|
||||
std::vector<MatrixPtr> scoreGrad;
|
||||
|
||||
size_t expansionCount;
|
||||
|
||||
explicit BeamExpansion(int n) {
|
||||
expansionCount = n;
|
||||
scores.resize(expansionCount);
|
||||
seqInfo.resize(expansionCount);
|
||||
candidateIds.resize(expansionCount);
|
||||
scoreGrad.resize(expansionCount);
|
||||
|
||||
gold.resize(expansionCount);
|
||||
}
|
||||
};
|
||||
typedef std::shared_ptr<BeamExpansion> BeamExpansionPtr;
|
||||
|
||||
class CostForOneSequence {
|
||||
public:
|
||||
CostForOneSequence()
|
||||
: beamSize_(0), validExpansionCount_(0), goldAsExtraPath_(false) {}
|
||||
void setData(const BeamExpansionPtr bPtr, size_t beamSize) {
|
||||
beams_ = bPtr;
|
||||
beamSize_ = beamSize;
|
||||
|
||||
expandedPathScores_.clear();
|
||||
expandedPathScores_.resize(beams_->expansionCount);
|
||||
|
||||
goldRowIds_.clear();
|
||||
goldRowIds_.resize(beams_->expansionCount, 0);
|
||||
goldColIds_.clear();
|
||||
goldColIds_.resize(beams_->expansionCount, -1);
|
||||
}
|
||||
size_t getValidExpansionCount() { return validExpansionCount_; }
|
||||
|
||||
real forward();
|
||||
void backward();
|
||||
|
||||
private:
|
||||
void calValidExpandStep();
|
||||
void constructTotalExpansion();
|
||||
size_t initLastExpansion();
|
||||
real globallyNormalizedScore();
|
||||
|
||||
int getSeqStartPos(size_t beamId, size_t rowId) {
|
||||
CHECK_GT(beams_->seqInfo[beamId]->getSize() - 1, rowId);
|
||||
int* starts = beams_->seqInfo[beamId]->getData();
|
||||
return starts[rowId] - starts[0];
|
||||
}
|
||||
|
||||
size_t beamSize_;
|
||||
size_t validExpansionCount_;
|
||||
bool goldAsExtraPath_;
|
||||
std::vector<int> goldRowIds_;
|
||||
std::vector<int> goldColIds_;
|
||||
|
||||
BeamExpansionPtr beams_;
|
||||
std::vector<std::vector<int>> pathRowIdsInEachBeam_;
|
||||
std::vector<int> parentIdsInBeam_;
|
||||
size_t goldIdsInFinalExpansion_;
|
||||
|
||||
std::vector<MatrixPtr> expandedPathScores_;
|
||||
|
||||
MatrixPtr softmaxOut_;
|
||||
};
|
||||
|
||||
class CrossEntropyOverBeam : public Layer {
|
||||
public:
|
||||
explicit CrossEntropyOverBeam(const LayerConfig& config) : Layer(config) {}
|
||||
bool init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) override;
|
||||
void forward(PassType passType) override;
|
||||
void backward(const UpdateCallback& callback) override;
|
||||
|
||||
private:
|
||||
void checkInputs();
|
||||
void copyInputsToCpu();
|
||||
void resizeOutput();
|
||||
void copyGradToGpu(size_t copyCount);
|
||||
void splitBatchBeams();
|
||||
|
||||
size_t beamExpanCount_;
|
||||
size_t batchSize_;
|
||||
size_t beamSize_;
|
||||
|
||||
/*
|
||||
* the process of constructing beams is not friendly to GPU, currently, this
|
||||
* layer only runs on CPU, if any of its inputs is on GPU memory, then copy
|
||||
* it to CPU memory.
|
||||
*/
|
||||
std::vector<MatrixPtr> candidateScores_;
|
||||
std::vector<MatrixPtr> candidateScoreGrad_;
|
||||
std::vector<MatrixPtr> candidateInBeam_;
|
||||
std::vector<MatrixPtr> gradToInputs_;
|
||||
std::vector<IVectorPtr> goldSequence_;
|
||||
std::vector<std::vector<int>> beamSplitPos_;
|
||||
|
||||
/*
|
||||
* split entire bath of beams into beam per sequnence and store the result
|
||||
* into this member.
|
||||
*/
|
||||
std::vector<BeamExpansion> beamPerSeq_;
|
||||
/* beamCosts_ is used to propagate error in one sequence. */
|
||||
std::vector<CostForOneSequence> beamCosts_;
|
||||
};
|
||||
|
||||
} // namespace paddle
|
||||
@ -0,0 +1,212 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "DeConv3DLayer.h"
|
||||
#include "paddle/utils/Logging.h"
|
||||
#include "paddle/utils/Stat.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
REGISTER_LAYER(deconv3d, DeConv3DLayer);
|
||||
|
||||
bool DeConv3DLayer::init(const LayerMap &layerMap,
|
||||
const ParameterMap ¶meterMap) {
|
||||
if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
|
||||
// for Deconv, the dimension of Kernel is
|
||||
// channel * output * depth * height * weigth
|
||||
// Matrix storage format: (output * depth * height * weigth) x channel
|
||||
for (int index = 0; index < config_.inputs().size(); ++index) {
|
||||
M_.push_back(filterChannels_[index]);
|
||||
K_.push_back(filterPixels_[index] * (numFilters_ / groups_[index]));
|
||||
|
||||
// create a new weight
|
||||
size_t height, width;
|
||||
height = filterPixels_[index] * numFilters_;
|
||||
width = filterChannels_[index];
|
||||
CHECK_EQ(parameters_[index]->getSize(), width * height);
|
||||
Weight *w = new Weight(height, width, parameters_[index]);
|
||||
weights_.emplace_back(w);
|
||||
}
|
||||
if (biasParameter_.get()) {
|
||||
if (sharedBiases_) {
|
||||
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
|
||||
biases_ =
|
||||
std::unique_ptr<Weight>(new Weight(1, numFilters_, biasParameter_));
|
||||
} else {
|
||||
biases_ =
|
||||
std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t DeConv3DLayer::getSize() {
|
||||
CHECK_NE(inputLayers_.size(), 0UL);
|
||||
outputH_.clear();
|
||||
outputW_.clear();
|
||||
outputD_.clear();
|
||||
N_.clear();
|
||||
NOut_.clear();
|
||||
size_t layerSize = 0;
|
||||
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
||||
outputW_.push_back(
|
||||
imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
|
||||
outputH_.push_back(imageSize(
|
||||
imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
|
||||
outputD_.push_back(imageSize(
|
||||
imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
|
||||
NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
|
||||
N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
|
||||
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
|
||||
layerSize += NOut_[i] * numFilters_;
|
||||
}
|
||||
getOutput().setFrameHeight(outputH_[0]);
|
||||
getOutput().setFrameWidth(outputW_[0]);
|
||||
getOutput().setFrameDepth(outputD_[0]);
|
||||
return layerSize;
|
||||
}
|
||||
|
||||
void DeConv3DLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
|
||||
int outWidth = getSize();
|
||||
resetOutput(batchSize, outWidth);
|
||||
const MatrixPtr outMat = getOutputValue();
|
||||
|
||||
for (size_t i = 0; i != inputLayers_.size(); ++i) {
|
||||
REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str());
|
||||
const MatrixPtr &inMat = getInputValue(i);
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
MatrixPtr wMat = weights_[i]->getW();
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
real *inData = inMat->getData() + n * inMat->getStride();
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
|
||||
MatrixPtr wMatSub = wMat->subMatrix(g * K, K);
|
||||
MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
|
||||
colBufDataSub->mul(*wMatSub, *inMatSub, 1.0, 0.0);
|
||||
inData += M * N;
|
||||
}
|
||||
colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(),
|
||||
numFilters_,
|
||||
outputD_[i],
|
||||
outputH_[i],
|
||||
outputW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i],
|
||||
1.0,
|
||||
1.0);
|
||||
}
|
||||
}
|
||||
if (nullptr != this->biasParameter_) {
|
||||
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
|
||||
this->addBias();
|
||||
}
|
||||
forwardActivation();
|
||||
}
|
||||
|
||||
void DeConv3DLayer::backward(const UpdateCallback &callback) {
|
||||
backwardActivation();
|
||||
int batchSize = getOutputGrad()->getHeight();
|
||||
if (biases_ && biases_->getWGrad()) {
|
||||
bpropBiases();
|
||||
biases_->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
for (size_t i = 0; i < inputLayers_.size(); ++i) {
|
||||
if (weights_[i]->getWGrad() || this->needGradient_) {
|
||||
int M = M_[i];
|
||||
int N = N_[i];
|
||||
int K = K_[i];
|
||||
REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str());
|
||||
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
|
||||
const MatrixPtr &inMat = getInputValue(i);
|
||||
for (int n = 0; n < batchSize; ++n) {
|
||||
colBuf_->vol2Col(
|
||||
getOutputGrad()->getData() + n * getOutputGrad()->getStride(),
|
||||
numFilters_,
|
||||
outputD_[i],
|
||||
outputH_[i],
|
||||
outputW_[i],
|
||||
filterSizeZ_[i],
|
||||
filterSizeY_[i],
|
||||
filterSize_[i],
|
||||
strideZ_[i],
|
||||
strideY_[i],
|
||||
stride_[i],
|
||||
paddingZ_[i],
|
||||
paddingY_[i],
|
||||
padding_[i]);
|
||||
if (weights_[i]->getWGrad()) {
|
||||
real *inData = inMat->getData() + n * inMat->getStride();
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr wGradMatSub =
|
||||
weights_[i]->getWGrad()->subMatrix(g * K, K);
|
||||
MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
|
||||
wGradMatSub->mul(
|
||||
*colBufDataSub, *(inMatSub->getTranspose()), 1.0, 1.0);
|
||||
inData += M * N;
|
||||
}
|
||||
}
|
||||
if (getInputGrad(i)) {
|
||||
real *preGrad =
|
||||
getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
|
||||
for (int g = 0; g < groups_[i]; ++g) {
|
||||
MatrixPtr w = weights_[i]->getW()->subMatrix(g * K, K);
|
||||
MatrixPtr outGradMat = colBuf_->subMatrix(g * K, K);
|
||||
MatrixPtr inGradMatSub =
|
||||
Matrix::create(preGrad, M, N, false, useGpu_);
|
||||
inGradMatSub->mul(*(w->getTranspose()), *outGradMat, 1.0, 1.0);
|
||||
preGrad += M * N;
|
||||
}
|
||||
}
|
||||
}
|
||||
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
|
||||
weights_[i]->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
}
|
||||
}
|
||||
void DeConv3DLayer::bpropWeights(int i) {}
|
||||
void DeConv3DLayer::bpropData(int i) {}
|
||||
|
||||
void DeConv3DLayer::bpropBiases() {
|
||||
const MatrixPtr &outGradMat = getOutputGrad();
|
||||
|
||||
if (this->sharedBiases_) {
|
||||
biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
|
||||
} else {
|
||||
biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
void DeConv3DLayer::addBias() {
|
||||
MatrixPtr outMat = getOutputValue();
|
||||
if (this->sharedBiases_) {
|
||||
outMat->addSharedBias(*(biases_->getW()), 1.0f);
|
||||
} else {
|
||||
outMat->addBias(*(biases_->getW()), 1.0f);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
||||
@ -0,0 +1,52 @@
|
||||
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include "ConvBaseLayer.h"
|
||||
#include "paddle/math/MathUtils.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* @brief A subclass of deconvolution3D layer.
|
||||
* This layer expands input and use matrix multiplication to
|
||||
* calculate deconvolution3D operation.
|
||||
*/
|
||||
class DeConv3DLayer : public ConvBaseLayer {
|
||||
public:
|
||||
explicit DeConv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
|
||||
~DeConv3DLayer() {}
|
||||
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
|
||||
|
||||
void forward(PassType passType);
|
||||
void addBias();
|
||||
void backward(const UpdateCallback& callback);
|
||||
void bpropBiases();
|
||||
void bpropData(int i);
|
||||
void bpropWeights(int i);
|
||||
size_t getSize();
|
||||
|
||||
protected:
|
||||
// Figure out the dimensions for individual gemms.
|
||||
IntV M_; /// numFilters_ / filter_group_;
|
||||
IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_
|
||||
IntV K_; /// outputD_ * outputH_ * outputW_
|
||||
IntV NOut_;
|
||||
MatrixPtr colBuf_;
|
||||
};
|
||||
|
||||
} // namespace paddle
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue