Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into cudnn_wrapper

revert-3824-remove_grad_op_type
dangqingqing 8 years ago
commit d4087efc99

@ -224,4 +224,80 @@ extern void hl_matrix_collect_shared_bias(real* B_d,
extern void hl_matrix_rotate(
real* mat, real* matRot, int dimM, int dimN, bool clockWise);
/**
* @brief Matrix vol2Col: Convert 3D volume into col matrix
*
* @param[in] matSrc input matrix.
* @param[in] channel channel of matSrc.
* @param[in] depth depth of matSrc.
* @param[in] height height of matSrc.
* @param[in] width width of matSrc.
* @param[in] filterD depth of filter.
* @param[in] filterH height of filter.
* @param[in] filterW width of filter.
* @param[in] strideD stride in the depth.
* @param[in] strideH stride in the height.
* @param[in] strideW stride in the width.
* @param[in] paddingD padding in the depth.
* @param[in] paddingH padding in the height.
* @param[in] paddingW padding in the width.
* @param[out] dataDst output matrix.
*
*/
extern void hl_matrix_vol2Col(const real* dataSrc,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
real* dataDst);
/**
* @brief Matrix col2Vol: Convert col matrix into 3D volume
*
* @param[out] matDst output matrix.
* @param[in] channel channel of matDst.
* @param[in] depth depth of matDst.
* @param[in] height height of matDst.
* @param[in] width width of matDst.
* @param[in] filterD depth of filter.
* @param[in] filterH height of filter.
* @param[in] filterW width of filter.
* @param[in] strideD stride in the depth.
* @param[in] strideH stride in the height.
* @param[in] strideW stride in the width.
* @param[in] paddingD padding in the depth.
* @param[in] paddingH padding in the height.
* @param[in] paddingW padding in the width.
* @param[in] matSrc input matrix.
* @param[in] beta input
* @param[in] alpha input
*
*/
extern void hl_matrix_col2Vol(real* dataDst,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
const real* dataSrc,
real alpha,
real beta);
#endif /* HL_MATRIX_H_ */

@ -99,4 +99,38 @@ inline void hl_matrix_collect_shared_bias(real* B_d,
inline void hl_matrix_rotate(
real* mat, real* matRot, int dimM, int dimN, bool clockWise) {}
inline void hl_matrix_vol2Col(const real* dataSrc,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
real* dataDst) {}
inline void hl_matrix_col2Vol(real* dataDst,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
const real* dataSrc,
real alpha,
real beta) {}
#endif // HL_MATRIX_STUB_H_

@ -592,3 +592,204 @@ void hl_matrix_rotate(
mat, matRot, dimM, dimN, clockWise);
CHECK_SYNC("hl_matrix_rotate failed");
}
__global__ void keMatrixVol2Col(int num_kernels,
const real* dataSrc,
real* dataDst,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
int depth_col,
int height_col,
int width_col) {
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
index += blockDim.x * gridDim.x) {
int w_out = index % width_col;
int h_out = (index / width_col) % height_col;
int d_out = (index / width_col / height_col) % depth_col;
int channel_in = index / width_col / height_col / depth_col;
int channel_out = channel_in * filterD * filterH * filterW;
int w_in = w_out * strideW - paddingW;
int h_in = h_out * strideH - paddingH;
int d_in = d_out * strideD - paddingD;
dataDst +=
((channel_out * depth_col + d_out) * height_col + h_out) * width_col +
w_out;
dataSrc += ((channel_in * depth + d_in) * height + h_in) * width + w_in;
for (int k = 0; k < filterD; ++k) {
for (int i = 0; i < filterH; ++i) {
for (int j = 0; j < filterW; ++j) {
int d = d_in + k;
int h = h_in + i;
int w = w_in + j;
*dataDst = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 &&
w < width)
? dataSrc[(k * height + i) * width + j]
: 0;
dataDst += depth_col * height_col * width_col;
}
}
}
}
}
void hl_matrix_vol2Col(const real* dataSrc,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
real* dataDst) {
int depth_col = (depth + 2 * paddingD - filterD) / strideD + 1;
int height_col = (height + 2 * paddingH - filterH) / strideH + 1;
int width_col = (width + 2 * paddingW - filterW) / strideW + 1;
int num_kernels = channels * depth_col * height_col * width_col;
const int threads = 512;
const int blocks = DIVUP(num_kernels, threads);
keMatrixVol2Col<<<blocks, threads, 0, STREAM_DEFAULT>>>(num_kernels,
dataSrc,
dataDst,
depth,
height,
width,
filterD,
filterH,
filterW,
strideD,
strideH,
strideW,
paddingD,
paddingH,
paddingW,
depth_col,
height_col,
width_col);
CHECK_SYNC("hl_matrix_vol2Col failed");
}
__global__ void keMatrixCol2Vol(int num_kernels,
real* dataDst,
const real* dataSrc,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
int depth_col,
int height_col,
int width_col,
real alpha,
real beta) {
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
index += blockDim.x * gridDim.x) {
real srcVal = 0;
real dstVal = dataDst[index];
int w = index % width + paddingW;
int h = (index / width) % height + paddingH;
int d = (index / width / height) % depth + paddingD;
int c = index / width / height / depth;
// compute the start and end of the output
int w_col_start = (w < filterW) ? 0 : (w - filterW) / strideW + 1;
int w_col_end = min(w / strideW + 1, width_col);
int h_col_start = (h < filterH) ? 0 : (h - filterH) / strideH + 1;
int h_col_end = min(h / strideH + 1, height_col);
int d_col_start = (d < filterD) ? 0 : (d - filterD) / strideD + 1;
int d_col_end = min(d / strideD + 1, depth_col);
int offset = (c * filterD * filterW * filterH + d * filterW * filterH +
h * filterW + w) *
depth_col * height_col * width_col;
int coeff_d_col =
(1 - strideD * filterW * filterH * depth_col) * height_col * width_col;
int coeff_h_col =
(1 - strideH * filterW * depth_col * height_col) * width_col;
int coeff_w_col = (1 - strideW * depth_col * height_col * width_col);
for (int d_col = d_col_start; d_col < d_col_end; ++d_col) {
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
srcVal += dataSrc[offset + d_col * coeff_d_col + h_col * coeff_h_col +
w_col * coeff_w_col];
}
}
}
dataDst[index] = alpha * srcVal + beta * dstVal;
}
}
void hl_matrix_col2Vol(real* dataDst,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
const real* dataSrc,
real alpha,
real beta) {
int depth_col = (depth + 2 * paddingD - filterD) / strideD + 1;
int height_col = (height + 2 * paddingH - filterH) / strideH + 1;
int width_col = (width + 2 * paddingW - filterW) / strideW + 1;
int num_kernels = channels * depth * height * width;
const int threads = 512;
const int blocks = DIVUP(num_kernels, threads);
keMatrixCol2Vol<<<blocks, threads, 0, STREAM_DEFAULT>>>(num_kernels,
dataDst,
dataSrc,
depth,
height,
width,
filterD,
filterH,
filterW,
strideD,
strideH,
strideW,
paddingD,
paddingH,
paddingW,
depth_col,
height_col,
width_col,
alpha,
beta);
CHECK_SYNC("hl_matrix_col2Vol failed");
}

@ -0,0 +1,244 @@
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Conv3DLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace paddle {
REGISTER_LAYER(conv3d, Conv3DLayer);
bool Conv3DLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) {
if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
int index = 0;
for (auto &inputConfig : config_.inputs()) {
const ConvConfig &conf = inputConfig.conv_conf();
M_.push_back(numFilters_ / conf.groups());
K_.push_back(filterPixels_[index] * filterChannels_[index]);
// create a new weight
size_t height, width;
width = filterPixels_[index] * filterChannels_[index];
height = numFilters_;
CHECK_EQ(parameters_[index]->getSize(), width * height);
Weight *w = new Weight(height, width, parameters_[index]);
weights_.emplace_back(w);
++index;
}
if (biasParameter_.get()) {
if (sharedBiases_) {
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
biases_ =
std::unique_ptr<Weight>(new Weight(1, numFilters_, biasParameter_));
} else {
biases_ =
std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
}
}
return true;
}
size_t Conv3DLayer::getSize() {
CHECK_NE(inputLayers_.size(), 0UL);
outputH_.clear();
outputW_.clear();
outputD_.clear();
N_.clear();
size_t layerSize = 0;
for (size_t i = 0; i < inputLayers_.size(); ++i) {
outputW_.push_back(outputSize(
imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
outputH_.push_back(outputSize(
imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
outputD_.push_back(outputSize(
imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
layerSize += N_[i] * numFilters_;
}
getOutput().setFrameHeight(outputH_[0]);
getOutput().setFrameWidth(outputW_[0]);
getOutput().setFrameDepth(outputD_[0]);
return layerSize;
}
void Conv3DLayer::forward(PassType passType) {
Layer::forward(passType);
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
int outWidth = getSize();
resetOutput(batchSize, outWidth);
for (size_t i = 0; i != inputLayers_.size(); ++i) {
REGISTER_TIMER_INFO("FwdConv3D", getName().c_str());
const MatrixPtr &inMat = getInputValue(i);
const MatrixPtr &outMat = getOutputValue();
int M = M_[i];
int N = N_[i];
int K = K_[i];
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
MatrixPtr wMat = weights_[i]->getW();
for (int n = 0; n < batchSize; ++n) {
colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
channels_[i],
imgSizeD_[i],
imgSizeH_[i],
imgSizeW_[i],
filterSizeZ_[i],
filterSizeY_[i],
filterSize_[i],
strideZ_[i],
strideY_[i],
stride_[i],
paddingZ_[i],
paddingY_[i],
padding_[i]);
real *outData = outMat->getData() + n * outMat->getStride();
MatrixPtr outMatSub =
Matrix::create(outData, groups_[i] * M, N, false, useGpu_);
for (int g = 0; g < groups_[i]; g++) {
MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
MatrixPtr in = colBuf_->subMatrix(g * K, K);
MatrixPtr out = outMatSub->subMatrix(g * M, M);
out->mul(*wMatSub, *in, 1.0, 1.0);
}
}
}
if (nullptr != this->biasParameter_) {
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
this->addBias();
}
forwardActivation();
}
void Conv3DLayer::backward(const UpdateCallback &callback) {
backwardActivation();
if (biases_ && biases_->getWGrad()) {
bpropBiases();
biases_->getParameterPtr()->incUpdate(callback);
}
for (size_t i = 0; i != inputLayers_.size(); ++i) {
REGISTER_TIMER_INFO("BwdConv3D", getName().c_str());
if (weights_[i]->getWGrad()) {
bpropWeights(i);
}
if (getInputGrad(i)) {
bpropData(i);
}
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
weights_[i]->getParameterPtr()->incUpdate(callback);
}
}
void Conv3DLayer::bpropWeights(int i) {
int M = M_[i];
int N = N_[i];
int K = K_[i];
const MatrixPtr &inMat = getInputValue(i);
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
MatrixPtr wGradMat = weights_[i]->getWGrad();
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
for (int n = 0; n < batchSize; ++n) {
colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(),
channels_[i],
imgSizeD_[i],
imgSizeH_[i],
imgSizeW_[i],
filterSizeZ_[i],
filterSizeY_[i],
filterSize_[i],
strideZ_[i],
strideY_[i],
stride_[i],
paddingZ_[i],
paddingY_[i],
padding_[i]);
real *outGradData =
getOutputGrad()->getData() + n * getOutputGrad()->getStride();
MatrixPtr outGradSub =
Matrix::create(outGradData, groups_[i] * M, N, false, useGpu_);
for (int g = 0; g < groups_[i]; ++g) {
MatrixPtr inMatSub = colBuf_->subMatrix(g * K, K);
MatrixPtr outG = outGradSub->subMatrix(g * M, M);
MatrixPtr wGradSub = wGradMat->subMatrix(g * M, M);
wGradSub->mul(*outG, *(inMatSub->getTranspose()), 1.0, 1.0);
}
}
}
void Conv3DLayer::bpropData(int i) {
int M = M_[i];
int N = N_[i];
int K = K_[i];
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
MatrixPtr wMat = weights_[i]->getW();
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
for (int n = 0; n < batchSize; ++n) {
real *outGradData =
getOutputGrad()->getData() + n * getOutputGrad()->getStride();
real *preGradData =
getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
MatrixPtr outGradSub =
Matrix::create(outGradData, M * groups_[i], N, false, useGpu_);
for (int g = 0; g < groups_[i]; ++g) {
MatrixPtr wMatSub = wMat->subMatrix(g * M, M);
MatrixPtr outG = outGradSub->subMatrix(g * M, M);
MatrixPtr inGradMatSub = colBuf_->subMatrix(g * K, K);
inGradMatSub->mul(*(wMatSub->getTranspose()), *outG, 1.0, 0.0);
}
colBuf_->col2Vol(preGradData,
channels_[i],
imgSizeD_[i],
imgSizeH_[i],
imgSizeW_[i],
filterSizeZ_[i],
filterSizeY_[i],
filterSize_[i],
strideZ_[i],
strideY_[i],
stride_[i],
paddingZ_[i],
paddingY_[i],
padding_[i],
1.0,
1.0);
}
}
void Conv3DLayer::bpropBiases() {
MatrixPtr outGradMat = getOutputGrad();
if (this->sharedBiases_) {
biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
} else {
biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
}
}
void Conv3DLayer::addBias() {
MatrixPtr outMat = getOutputValue();
if (this->sharedBiases_) {
outMat->addSharedBias(*(biases_->getW()), 1.0f);
} else {
outMat->addBias(*(biases_->getW()), 1.0f);
}
}
} // namespace paddle

@ -0,0 +1,51 @@
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "ConvBaseLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace paddle {
/**
* @brief A subclass of convolution layer.
* This layer expands input and use matrix multiplication to
* calculate convolution operation.
*/
class Conv3DLayer : public ConvBaseLayer {
public:
explicit Conv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
~Conv3DLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void addBias();
void backward(const UpdateCallback& callback);
void bpropBiases();
void bpropData(int i);
void bpropWeights(int i);
size_t getSize();
protected:
// Figure out the dimensions for individual gemms.
IntV M_; /// numFilters_ / filter_group_;
IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_
IntV K_; /// outputD_ * outputH_ * outputW_
MatrixPtr colBuf_;
};
} // namespace paddle

@ -38,7 +38,6 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
strideY_.push_back(conf.stride_y());
dilationY_.push_back(conf.dilation_y());
filterSizeY_.push_back(conf.filter_size_y());
filterPixels_.push_back(filterSize_.back() * filterSizeY_.back());
channels_.push_back(conf.channels());
imgSizeH_.push_back(conf.has_img_size_y() ? conf.img_size_y()
: conf.img_size());
@ -47,31 +46,20 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
filterChannels_.push_back(conf.filter_channels());
outputH_.push_back(conf.has_output_y() ? conf.output_y() : conf.output_x());
outputW_.push_back(conf.output_x());
paddingZ_.push_back(conf.padding_z());
strideZ_.push_back(conf.stride_z());
filterSizeZ_.push_back(conf.filter_size_z());
imgSizeD_.push_back(conf.img_size_z());
outputD_.push_back(conf.output_z());
filterPixels_.push_back(filterSize_.back() * filterSizeY_.back() *
filterSizeZ_.back());
}
CHECK(inputLayers_.size() == parameters_.size());
for (size_t i = 0; i < inputLayers_.size(); i++) {
size_t height, width;
height = filterPixels_[i] * filterChannels_[i];
width = (!isDeconv_) ? numFilters_ : channels_[i];
// create a new weight
CHECK_EQ(parameters_[i]->getSize(), width * height);
Weight* w = new Weight(height, width, parameters_[i]);
weights_.emplace_back(w);
}
/* initialize the biases_ */
if (biasParameter_.get()) {
if (sharedBiases_) {
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
biases_ =
std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
} else {
biases_ =
std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
}
}
// create new weights_ in derived class
// create new biases_ in derived class
// default caffe model
caffeMode_ = true;

@ -62,6 +62,13 @@ protected:
IntV outputH_;
/// The spatial dimensions of output feature map width.
IntV outputW_;
IntV outputD_;
IntV imgSizeD_;
IntV filterSizeZ_;
IntV strideZ_;
IntV paddingZ_;
/// Group size, refer to grouped convolution in
/// Alex Krizhevsky's paper: when group=2, the first half of the
/// filters are only connected to the first half of the input channels,

File diff suppressed because it is too large Load Diff

@ -0,0 +1,135 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "CrossEntropyOverBeam.h"
#include "Layer.h"
namespace paddle {
/* This struct stores the beams in all search steps for a single sequence. */
struct BeamExpansion {
std::vector<MatrixPtr> scores;
std::vector<IVectorPtr> seqInfo;
std::vector<MatrixPtr> candidateIds;
std::vector<int> gold;
std::vector<MatrixPtr> scoreGrad;
size_t expansionCount;
explicit BeamExpansion(int n) {
expansionCount = n;
scores.resize(expansionCount);
seqInfo.resize(expansionCount);
candidateIds.resize(expansionCount);
scoreGrad.resize(expansionCount);
gold.resize(expansionCount);
}
};
typedef std::shared_ptr<BeamExpansion> BeamExpansionPtr;
class CostForOneSequence {
public:
CostForOneSequence()
: beamSize_(0), validExpansionCount_(0), goldAsExtraPath_(false) {}
void setData(const BeamExpansionPtr bPtr, size_t beamSize) {
beams_ = bPtr;
beamSize_ = beamSize;
expandedPathScores_.clear();
expandedPathScores_.resize(beams_->expansionCount);
goldRowIds_.clear();
goldRowIds_.resize(beams_->expansionCount, 0);
goldColIds_.clear();
goldColIds_.resize(beams_->expansionCount, -1);
}
size_t getValidExpansionCount() { return validExpansionCount_; }
real forward();
void backward();
private:
void calValidExpandStep();
void constructTotalExpansion();
size_t initLastExpansion();
real globallyNormalizedScore();
int getSeqStartPos(size_t beamId, size_t rowId) {
CHECK_GT(beams_->seqInfo[beamId]->getSize() - 1, rowId);
int* starts = beams_->seqInfo[beamId]->getData();
return starts[rowId] - starts[0];
}
size_t beamSize_;
size_t validExpansionCount_;
bool goldAsExtraPath_;
std::vector<int> goldRowIds_;
std::vector<int> goldColIds_;
BeamExpansionPtr beams_;
std::vector<std::vector<int>> pathRowIdsInEachBeam_;
std::vector<int> parentIdsInBeam_;
size_t goldIdsInFinalExpansion_;
std::vector<MatrixPtr> expandedPathScores_;
MatrixPtr softmaxOut_;
};
class CrossEntropyOverBeam : public Layer {
public:
explicit CrossEntropyOverBeam(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
private:
void checkInputs();
void copyInputsToCpu();
void resizeOutput();
void copyGradToGpu(size_t copyCount);
void splitBatchBeams();
size_t beamExpanCount_;
size_t batchSize_;
size_t beamSize_;
/*
* the process of constructing beams is not friendly to GPU, currently, this
* layer only runs on CPU, if any of its inputs is on GPU memory, then copy
* it to CPU memory.
*/
std::vector<MatrixPtr> candidateScores_;
std::vector<MatrixPtr> candidateScoreGrad_;
std::vector<MatrixPtr> candidateInBeam_;
std::vector<MatrixPtr> gradToInputs_;
std::vector<IVectorPtr> goldSequence_;
std::vector<std::vector<int>> beamSplitPos_;
/*
* split entire bath of beams into beam per sequnence and store the result
* into this member.
*/
std::vector<BeamExpansion> beamPerSeq_;
/* beamCosts_ is used to propagate error in one sequence. */
std::vector<CostForOneSequence> beamCosts_;
};
} // namespace paddle

@ -46,8 +46,26 @@ bool CudnnConvBaseLayer::init(const LayerMap &layerMap,
projConf_.emplace_back(conf);
projections_.emplace_back(
Projection::create(*projConf_[i], parameters_[i], useGpu_));
// create a new weight
size_t height, width;
height = filterPixels_[i] * filterChannels_[i];
width = (!isDeconv_) ? numFilters_ : channels_[i];
CHECK_EQ(parameters_[i]->getSize(), width * height);
Weight *w = new Weight(height, width, parameters_[i]);
weights_.emplace_back(w);
}
if (biasParameter_.get()) {
if (sharedBiases_) {
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
biases_ =
std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
} else {
biases_ =
std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
}
}
if (biases_.get() && sharedBiases_) {
hl_create_tensor_descriptor(&biasDesc_);
hl_create_tensor_descriptor(&outputDesc_);

@ -0,0 +1,212 @@
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "DeConv3DLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace paddle {
REGISTER_LAYER(deconv3d, DeConv3DLayer);
bool DeConv3DLayer::init(const LayerMap &layerMap,
const ParameterMap &parameterMap) {
if (!ConvBaseLayer::init(layerMap, parameterMap)) return false;
// for Deconv, the dimension of Kernel is
// channel * output * depth * height * weigth
// Matrix storage format: (output * depth * height * weigth) x channel
for (int index = 0; index < config_.inputs().size(); ++index) {
M_.push_back(filterChannels_[index]);
K_.push_back(filterPixels_[index] * (numFilters_ / groups_[index]));
// create a new weight
size_t height, width;
height = filterPixels_[index] * numFilters_;
width = filterChannels_[index];
CHECK_EQ(parameters_[index]->getSize(), width * height);
Weight *w = new Weight(height, width, parameters_[index]);
weights_.emplace_back(w);
}
if (biasParameter_.get()) {
if (sharedBiases_) {
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
biases_ =
std::unique_ptr<Weight>(new Weight(1, numFilters_, biasParameter_));
} else {
biases_ =
std::unique_ptr<Weight>(new Weight(1, getSize(), biasParameter_));
}
}
return true;
}
size_t DeConv3DLayer::getSize() {
CHECK_NE(inputLayers_.size(), 0UL);
outputH_.clear();
outputW_.clear();
outputD_.clear();
N_.clear();
NOut_.clear();
size_t layerSize = 0;
for (size_t i = 0; i < inputLayers_.size(); ++i) {
outputW_.push_back(
imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true));
outputH_.push_back(imageSize(
imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true));
outputD_.push_back(imageSize(
imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true));
NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]);
N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]);
CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize);
layerSize += NOut_[i] * numFilters_;
}
getOutput().setFrameHeight(outputH_[0]);
getOutput().setFrameWidth(outputW_[0]);
getOutput().setFrameDepth(outputD_[0]);
return layerSize;
}
void DeConv3DLayer::forward(PassType passType) {
Layer::forward(passType);
int batchSize = inputLayers_[0]->getOutputValue()->getHeight();
int outWidth = getSize();
resetOutput(batchSize, outWidth);
const MatrixPtr outMat = getOutputValue();
for (size_t i = 0; i != inputLayers_.size(); ++i) {
REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str());
const MatrixPtr &inMat = getInputValue(i);
int M = M_[i];
int N = N_[i];
int K = K_[i];
MatrixPtr wMat = weights_[i]->getW();
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
for (int n = 0; n < batchSize; ++n) {
real *inData = inMat->getData() + n * inMat->getStride();
for (int g = 0; g < groups_[i]; ++g) {
MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
MatrixPtr wMatSub = wMat->subMatrix(g * K, K);
MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
colBufDataSub->mul(*wMatSub, *inMatSub, 1.0, 0.0);
inData += M * N;
}
colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(),
numFilters_,
outputD_[i],
outputH_[i],
outputW_[i],
filterSizeZ_[i],
filterSizeY_[i],
filterSize_[i],
strideZ_[i],
strideY_[i],
stride_[i],
paddingZ_[i],
paddingY_[i],
padding_[i],
1.0,
1.0);
}
}
if (nullptr != this->biasParameter_) {
REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str());
this->addBias();
}
forwardActivation();
}
void DeConv3DLayer::backward(const UpdateCallback &callback) {
backwardActivation();
int batchSize = getOutputGrad()->getHeight();
if (biases_ && biases_->getWGrad()) {
bpropBiases();
biases_->getParameterPtr()->incUpdate(callback);
}
for (size_t i = 0; i < inputLayers_.size(); ++i) {
if (weights_[i]->getWGrad() || this->needGradient_) {
int M = M_[i];
int N = N_[i];
int K = K_[i];
REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str());
Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_);
const MatrixPtr &inMat = getInputValue(i);
for (int n = 0; n < batchSize; ++n) {
colBuf_->vol2Col(
getOutputGrad()->getData() + n * getOutputGrad()->getStride(),
numFilters_,
outputD_[i],
outputH_[i],
outputW_[i],
filterSizeZ_[i],
filterSizeY_[i],
filterSize_[i],
strideZ_[i],
strideY_[i],
stride_[i],
paddingZ_[i],
paddingY_[i],
padding_[i]);
if (weights_[i]->getWGrad()) {
real *inData = inMat->getData() + n * inMat->getStride();
for (int g = 0; g < groups_[i]; ++g) {
MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K);
MatrixPtr wGradMatSub =
weights_[i]->getWGrad()->subMatrix(g * K, K);
MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_);
wGradMatSub->mul(
*colBufDataSub, *(inMatSub->getTranspose()), 1.0, 1.0);
inData += M * N;
}
}
if (getInputGrad(i)) {
real *preGrad =
getInputGrad(i)->getData() + n * getInputGrad(i)->getStride();
for (int g = 0; g < groups_[i]; ++g) {
MatrixPtr w = weights_[i]->getW()->subMatrix(g * K, K);
MatrixPtr outGradMat = colBuf_->subMatrix(g * K, K);
MatrixPtr inGradMatSub =
Matrix::create(preGrad, M, N, false, useGpu_);
inGradMatSub->mul(*(w->getTranspose()), *outGradMat, 1.0, 1.0);
preGrad += M * N;
}
}
}
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
weights_[i]->getParameterPtr()->incUpdate(callback);
}
}
}
void DeConv3DLayer::bpropWeights(int i) {}
void DeConv3DLayer::bpropData(int i) {}
void DeConv3DLayer::bpropBiases() {
const MatrixPtr &outGradMat = getOutputGrad();
if (this->sharedBiases_) {
biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f);
} else {
biases_->getWGrad()->collectBias(*outGradMat, 1.0f);
}
}
void DeConv3DLayer::addBias() {
MatrixPtr outMat = getOutputValue();
if (this->sharedBiases_) {
outMat->addSharedBias(*(biases_->getW()), 1.0f);
} else {
outMat->addBias(*(biases_->getW()), 1.0f);
}
}
} // namespace paddle

@ -0,0 +1,52 @@
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "ConvBaseLayer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace paddle {
/**
* @brief A subclass of deconvolution3D layer.
* This layer expands input and use matrix multiplication to
* calculate deconvolution3D operation.
*/
class DeConv3DLayer : public ConvBaseLayer {
public:
explicit DeConv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {}
~DeConv3DLayer() {}
bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
void forward(PassType passType);
void addBias();
void backward(const UpdateCallback& callback);
void bpropBiases();
void bpropData(int i);
void bpropWeights(int i);
size_t getSize();
protected:
// Figure out the dimensions for individual gemms.
IntV M_; /// numFilters_ / filter_group_;
IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_
IntV K_; /// outputD_ * outputH_ * outputW_
IntV NOut_;
MatrixPtr colBuf_;
};
} // namespace paddle

@ -22,12 +22,31 @@ bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
/* Initialize the basic convolutional parent class */
ConvBaseLayer::init(layerMap, parameterMap);
int index = 0;
for (auto &inputConfig : config_.inputs()) {
const ConvConfig &conf = inputConfig.conv_conf();
/* Consistent caffe mode for multiple input */
caffeMode_ = conf.caffe_mode();
}
// create a new weight
size_t height, width;
height = filterPixels_[index] * filterChannels_[index];
width = (!isDeconv_) ? numFilters_ : channels_[index];
CHECK_EQ(parameters_[index]->getSize(), width * height);
Weight *w = new Weight(height, width, parameters_[index]);
weights_.emplace_back(w);
index++;
}
if (biasParameter_.get()) {
if (sharedBiases_) {
CHECK_EQ((size_t)numFilters_, biasParameter_->getSize());
biases_ =
std::unique_ptr<Weight>(new Weight(numFilters_, 1, biasParameter_));
} else {
biases_ =
std::unique_ptr<Weight>(new Weight(getSize(), 1, biasParameter_));
}
}
getOutputSize();
return true;

@ -34,6 +34,13 @@ add_unittest_without_exec(test_CRFLayerGrad
add_test(NAME test_CRFLayerGrad
COMMAND test_CRFLayerGrad)
################ test_CrossEntropyOverBeam ####################
add_unittest_without_exec(test_CrossEntropyOverBeam
test_CrossEntropyOverBeamGrad.cpp
LayerGradUtil.cpp)
add_test(NAME test_CrossEntropyOverBeam
COMMAND test_CrossEntropyOverBeam)
################ test_SeqSliceLayerGrad ####################
add_unittest_without_exec(test_SeqSliceLayerGrad
test_SeqSliceLayerGrad.cpp

File diff suppressed because it is too large Load Diff

@ -2047,6 +2047,159 @@ TEST(Layer, RowL2NormLayer) {
}
}
void test3DConvLayer(const string& type, bool trans, bool useGpu) {
// filter size
const int NUM_FILTERS = 6;
// const int CHANNELS = 3;
const int FILTER_SIZE = 3;
const int FILTER_SIZE_Y = 3;
const int FILTER_SIZE_Z = 3;
// input image
const int CHANNELS = 3;
const int IMAGE_SIZE = 9;
const int IMAGE_SIZE_Y = 9;
const int IMAGE_SIZE_Z = 9;
TestConfig config;
config.biasSize = NUM_FILTERS;
config.layerConfig.set_type(type);
config.layerConfig.set_num_filters(NUM_FILTERS);
config.layerConfig.set_partial_sum(1);
config.layerConfig.set_shared_biases(true);
// Setting up conv3D-trans layer
LayerInputConfig* input = config.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf();
conv->set_channels(CHANNELS);
conv->set_filter_size(FILTER_SIZE);
conv->set_filter_size_y(FILTER_SIZE_Y);
conv->set_filter_size_z(FILTER_SIZE_Z);
conv->set_padding(0);
conv->set_padding_y(0);
conv->set_padding_z(0);
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_stride_z(2);
conv->set_img_size(IMAGE_SIZE);
conv->set_img_size_y(IMAGE_SIZE_Y);
conv->set_img_size_z(IMAGE_SIZE_Z);
conv->set_output_x(outputSize(conv->img_size(),
conv->filter_size(),
conv->padding(),
conv->stride(),
/* caffeMode */ true));
conv->set_output_y(outputSize(conv->img_size_y(),
conv->filter_size_y(),
conv->padding_y(),
conv->stride_y(),
/* caffeMode */ true));
conv->set_output_z(outputSize(conv->img_size_z(),
conv->filter_size_z(),
conv->padding_z(),
conv->stride_z(),
/* caffeMode */ true));
config.layerConfig.set_size(conv->output_x() * conv->output_y() *
conv->output_z() * NUM_FILTERS);
conv->set_groups(1);
conv->set_filter_channels(conv->channels() / conv->groups());
config.inputDefs.push_back(
{INPUT_DATA,
"layer_0",
CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z,
conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z *
NUM_FILTERS});
testLayerGrad(config, "conv3D", 10, trans, useGpu);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad(config, "conv3D", 2, trans, useGpu, true, 0.02);
}
TEST(Layer, test3DConvLayer) {
test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ false);
#ifndef PADDLE_ONLY_CPU
test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ true);
#endif
}
void test3DDeConvLayer(const string& type, bool trans, bool useGpu) {
// filter size
const int NUM_FILTERS = 6;
// const int CHANNELS = 3;
const int FILTER_SIZE = 3;
const int FILTER_SIZE_Y = 3;
const int FILTER_SIZE_Z = 3;
// input image
const int CHANNELS = 3;
const int IMAGE_SIZE = 4;
const int IMAGE_SIZE_Y = 6;
const int IMAGE_SIZE_Z = 6;
// Setting up conv-trans layer
TestConfig config;
config.biasSize = NUM_FILTERS;
config.layerConfig.set_type("deconv3d");
config.layerConfig.set_num_filters(NUM_FILTERS);
config.layerConfig.set_partial_sum(1);
config.layerConfig.set_shared_biases(true);
LayerInputConfig* input = config.layerConfig.add_inputs();
ConvConfig* conv = input->mutable_conv_conf();
conv->set_channels(CHANNELS);
conv->set_filter_size(FILTER_SIZE);
conv->set_filter_size_y(FILTER_SIZE_Y);
conv->set_filter_size_z(FILTER_SIZE_Z);
conv->set_padding(0);
conv->set_padding_y(0);
conv->set_padding_z(0);
conv->set_stride(2);
conv->set_stride_y(2);
conv->set_stride_z(2);
conv->set_img_size(IMAGE_SIZE);
conv->set_img_size_y(IMAGE_SIZE_Y);
conv->set_img_size_z(IMAGE_SIZE_Z);
conv->set_output_x(imageSize(conv->img_size(),
conv->filter_size(),
conv->padding(),
conv->stride(),
true));
conv->set_output_y(imageSize(conv->img_size_y(),
conv->filter_size_y(),
conv->padding_y(),
conv->stride_y(),
true));
conv->set_output_z(imageSize(conv->img_size_z(),
conv->filter_size_z(),
conv->padding_z(),
conv->stride_z(),
true));
config.layerConfig.set_size(conv->output_x() * conv->output_y() *
conv->output_z() * NUM_FILTERS);
conv->set_groups(1);
conv->set_filter_channels(conv->channels() / conv->groups());
config.inputDefs.push_back(
{INPUT_DATA,
"layer_0",
CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z,
conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z *
NUM_FILTERS});
testLayerGrad(config, "deconv3D", 10, trans, useGpu);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad(config, "deconv3D", 2, trans, useGpu, true, 0.02);
}
TEST(Layer, test3DDeConvLayer) {
test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ false);
#ifndef PADDLE_ONLY_CPU
test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ true);
#endif
}
TEST(Layer, ScaleShiftLayer) {
const size_t batchSize = 16;
const size_t size = 32;

@ -1389,6 +1389,72 @@ void GpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
output_d, grad_d, mat_d, height_, width_);
}
void GpuMatrix::vol2Col(real* dataSrc,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW) {
hl_matrix_vol2Col(dataSrc,
channels,
depth,
height,
width,
filterD,
filterH,
filterW,
strideD,
strideH,
strideW,
paddingD,
paddingH,
paddingW,
getData());
}
void GpuMatrix::col2Vol(real* dataDst,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
real alpha,
real beta) {
hl_matrix_col2Vol(dataDst,
channels,
depth,
height,
width,
filterD,
filterH,
filterW,
strideD,
strideH,
strideW,
paddingD,
paddingH,
paddingW,
getData(),
alpha,
beta);
}
/**
* CpuMatrix
*/
@ -3975,6 +4041,95 @@ void CpuMatrix::bilinearBackward(const Matrix& out,
}
}
void CpuMatrix::vol2Col(real* data,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW) {
real* outData = getData();
int outHeight = (height + 2 * paddingH - filterH) / strideH + 1;
int outWidth = (width + 2 * paddingW - filterW) / strideW + 1;
int outDepth = (depth + 2 * paddingD - filterD) / strideD + 1;
int channelsCol = channels * filterD * filterH * filterW;
for (int c = 0; c < channelsCol; ++c) {
int wOffset = c % filterW;
int hOffset = (c / filterW) % filterH;
int dOffset = (c / filterW / filterH) % filterD;
int cIn = c / filterW / filterH / filterD;
for (int d = 0; d < outDepth; ++d) {
for (int h = 0; h < outHeight; ++h) {
for (int w = 0; w < outWidth; ++w) {
int dPad = d * strideD - paddingD + dOffset;
int hPad = h * strideH - paddingH + hOffset;
int wPad = w * strideW - paddingW + wOffset;
if (hPad >= 0 && hPad < height && wPad >= 0 && wPad < width &&
dPad >= 0 && dPad < depth)
outData[((c * outDepth + d) * outHeight + h) * outWidth + w] =
data[((cIn * depth + dPad) * height + hPad) * width + wPad];
else
outData[((c * outDepth + d) * outHeight + h) * outWidth + w] = 0;
}
}
}
}
}
void CpuMatrix::col2Vol(real* trg,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
real alpha,
real beta) {
real* src = getData();
int outDepth = (depth + 2 * paddingD - filterD) / strideD + 1;
int outHeight = (height + 2 * paddingH - filterH) / strideH + 1;
int outWidth = (width + 2 * paddingW - filterW) / strideW + 1;
int channelsCol = channels * filterD * filterH * filterW;
for (int c = 0; c < channelsCol; ++c) {
int wOffset = c % filterW;
int hOffset = (c / filterW) % filterH;
int dOffset = (c / filterW / filterH) % filterD;
int cIm = c / filterW / filterH / filterD;
for (int d = 0; d < outDepth; ++d) {
for (int h = 0; h < outHeight; ++h) {
for (int w = 0; w < outWidth; ++w) {
int dPad = d * strideD - paddingD + dOffset;
int hPad = h * strideH - paddingH + hOffset;
int wPad = w * strideW - paddingW + wOffset;
if (hPad >= 0 && hPad < height && wPad >= 0 && wPad < width &&
dPad >= 0 && dPad < depth)
trg[((cIm * depth + dPad) * height + hPad) * width + wPad] =
alpha *
src[((c * outDepth + d) * outHeight + h) * outWidth + w] +
beta *
trg[((cIm * depth + dPad) * height + hPad) * width + wPad];
}
}
}
}
}
////////////////////////////////////////////////////////////////
// functions executed via cpu //
////////////////////////////////////////////////////////////////

@ -1039,6 +1039,42 @@ public:
LOG(FATAL) << "Not implemented";
}
virtual void vol2Col(real* data,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW) {
LOG(FATAL) << "Not implemeted";
}
virtual void col2Vol(real* trg,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
real alpha,
real beta) {
LOG(FATAL) << "Not implemeted";
}
virtual void bilinearForward(const Matrix& in,
const size_t inImgH,
const size_t inImgW,
@ -1374,6 +1410,38 @@ public:
const real ratioH,
const real ratioW);
void vol2Col(real* data,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW);
void col2Vol(real* trg,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
real alpha,
real beta);
void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label);
void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label);
@ -1715,6 +1783,38 @@ public:
const real ratioH,
const real ratioW);
void vol2Col(real* data,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW);
void col2Vol(real* trg,
int channels,
int depth,
int height,
int width,
int filterD,
int filterH,
int filterW,
int strideD,
int strideH,
int strideW,
int paddingD,
int paddingH,
int paddingW,
real alpha,
real beta);
template <typename ExpressionType>
void operator=(const ExpressionType& expr) {
TensorCpuApply<real>(*this, expr);

@ -18,6 +18,7 @@ limitations under the License. */
#include <gtest/gtest.h>
#include "TensorCheck.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include "paddle/testing/TestUtil.h"
@ -1203,4 +1204,105 @@ TEST(Matrix, warpCTC) {
}
}
void testMatrixCol2Vol(int depth, int height, int width) {
int channel = 3;
int filterX = 3, filterY = 4, filterZ = 5;
int strideX = 2, strideY = 2, strideZ = 2;
int padX = 1, padY = 1, padZ = 1;
MatrixPtr cpuImage =
std::make_shared<CpuMatrix>(channel, depth * height * width);
MatrixPtr gpuImage =
std::make_shared<GpuMatrix>(channel, depth * height * width);
cpuImage->randomizeUniform();
gpuImage->copyFrom(*cpuImage);
int outD = outputSize(depth, filterZ, padZ, strideZ, true);
int outH = outputSize(height, filterY, padY, strideY, true);
int outW = outputSize(width, filterX, padX, strideX, true);
int colBufHeight = channel * filterZ * filterY * filterX;
int colBufWidth = outD * outH * outW;
MatrixPtr cpuColBuf = std::make_shared<CpuMatrix>(colBufHeight, colBufWidth);
MatrixPtr gpuColBuf = std::make_shared<GpuMatrix>(colBufHeight, colBufWidth);
cpuColBuf->vol2Col(cpuImage->getData(),
channel,
depth,
height,
width,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX);
gpuColBuf->vol2Col(gpuImage->getData(),
channel,
depth,
height,
width,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX);
TensorCheckEqual(*cpuColBuf, *gpuColBuf);
cpuColBuf->randomizeUniform();
gpuColBuf->copyFrom(*cpuColBuf);
cpuColBuf->col2Vol(cpuImage->getData(),
channel,
depth,
height,
width,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX,
1.0,
1.0);
gpuColBuf->col2Vol(gpuImage->getData(),
channel,
depth,
height,
width,
filterZ,
filterY,
filterX,
strideZ,
strideY,
strideX,
padZ,
padY,
padX,
1.0,
1.0);
TensorCheckErr(*cpuImage, *gpuImage);
}
TEST(Matrix, col2Vol) {
for (auto depth : {9, 16, 64}) {
for (auto height : {9, 11, 128}) {
for (auto width : {9, 32, 128}) {
VLOG(3) << "depth=" << depth << " height=" << height
<< " width=" << width;
testMatrixCol2Vol(depth, height, width);
}
}
}
}
///////
#endif

@ -186,6 +186,7 @@ void Argument::resizeAndCopyFrom(const Argument& src,
resizeAndCopy(strs, src.strs, useGpu, stream);
frameWidth = src.frameWidth;
frameHeight = src.frameHeight;
frameDepth = src.frameDepth;
}
int32_t Argument::resizeAndCopyFrom(const Argument& src,
@ -206,6 +207,7 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src,
dataId = src.dataId;
frameWidth = src.frameWidth;
frameHeight = src.frameHeight;
frameDepth = src.frameDepth;
if (!src.sequenceStartPositions) {
// non-sequence input, copy samples directly
@ -677,6 +679,7 @@ void Argument::reorganizeSeqInfo(
const ICpuGpuVectorPtr subSeqStartPos,
std::vector<std::vector<int>>& reorganizedSeqInfo) {
CHECK(seqStartPos);
reorganizedSeqInfo.clear();
int seqNum = seqStartPos->getSize() - 1;
int* seqStarts = seqStartPos->getMutableData(false);

@ -1,11 +1,8 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@ -35,6 +32,7 @@ struct Argument {
strs(nullptr),
frameHeight(0),
frameWidth(0),
frameDepth(0),
sequenceStartPositions(nullptr),
subSequenceStartPositions(nullptr),
cpuSequenceDims(nullptr),
@ -64,6 +62,7 @@ struct Argument {
allCount = argument.allCount;
frameHeight = argument.frameHeight;
frameWidth = argument.frameWidth;
frameDepth = argument.frameDepth;
dataId = argument.dataId;
}
@ -76,6 +75,7 @@ struct Argument {
// A dataBatch includes batchSize frames, one frame maybe not only vector
size_t frameHeight;
size_t frameWidth;
size_t frameDepth;
// If NULL, each position is treated independently.
// Otherwise, its size should be #NumberOfSequences + 1.
@ -136,8 +136,10 @@ struct Argument {
}
size_t getFrameHeight() const { return frameHeight; }
size_t getFrameWidth() const { return frameWidth; }
size_t getFrameDepth() const { return frameDepth; }
void setFrameHeight(size_t h) { frameHeight = h; }
void setFrameWidth(size_t w) { frameWidth = w; }
void setFrameDepth(size_t d) { frameDepth = d; }
int64_t getNumSequences() const {
return sequenceStartPositions ? sequenceStartPositions->getSize() - 1

@ -22,7 +22,6 @@ limitations under the License. */
#include <arpa/inet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <sys/ioctl.h>
#include <sstream>

@ -85,6 +85,12 @@ message ConvConfig {
optional uint32 dilation = 15 [ default = 1 ];
optional uint32 dilation_y = 16 [ default = 1 ];
optional uint32 filter_size_z = 17 [ default = 1 ];
optional uint32 padding_z = 18 [ default = 1 ];
optional uint32 stride_z = 19 [ default = 1 ];
optional uint32 output_z = 20 [ default = 1 ];
optional uint32 img_size_z = 21 [ default = 1 ];
}
message PoolConfig {
@ -502,6 +508,8 @@ message LayerConfig {
// for HuberRegressionLoss
optional double delta = 57 [ default = 1.0 ];
optional uint64 depth = 58 [ default = 1 ];
}
message EvaluatorConfig {

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save