|  |  |  | @ -12602,28 +12602,64 @@ def uniform_random_batch_size_like(input, | 
			
		
	
		
			
				
					|  |  |  |  |                                    max=1.0, | 
			
		
	
		
			
				
					|  |  |  |  |                                    seed=0): | 
			
		
	
		
			
				
					|  |  |  |  |     """ | 
			
		
	
		
			
				
					|  |  |  |  |     ${comment} | 
			
		
	
		
			
				
					|  |  |  |  |     This OP initializes a variable with random values sampled from a | 
			
		
	
		
			
				
					|  |  |  |  |     uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension. | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     .. code-block:: text | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |         *Case 1: | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |             Given: | 
			
		
	
		
			
				
					|  |  |  |  |                 input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3] | 
			
		
	
		
			
				
					|  |  |  |  |                 shape=[2,4] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |             result.shape[output_dim_idx] = input.shape[input_dim_idx], | 
			
		
	
		
			
				
					|  |  |  |  |             output_dim_idx = 0,  | 
			
		
	
		
			
				
					|  |  |  |  |             input_dim_idx = 0, | 
			
		
	
		
			
				
					|  |  |  |  |             result.shape[0] = input.shape[0],  | 
			
		
	
		
			
				
					|  |  |  |  |             then: | 
			
		
	
		
			
				
					|  |  |  |  |                 result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4] | 
			
		
	
		
			
				
					|  |  |  |  |              | 
			
		
	
		
			
				
					|  |  |  |  |        *Case 2: | 
			
		
	
		
			
				
					|  |  |  |  |             | 
			
		
	
		
			
				
					|  |  |  |  |            Given: | 
			
		
	
		
			
				
					|  |  |  |  |                input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3] | 
			
		
	
		
			
				
					|  |  |  |  |                shape=[2,4] | 
			
		
	
		
			
				
					|  |  |  |  |                input_dim_idx=1 | 
			
		
	
		
			
				
					|  |  |  |  |                output_dim_idx=1 | 
			
		
	
		
			
				
					|  |  |  |  |           | 
			
		
	
		
			
				
					|  |  |  |  |            result.shape[output_dim_idx] = input.shape[input_dim_idx], | 
			
		
	
		
			
				
					|  |  |  |  |            output_dim_idx = 1,  | 
			
		
	
		
			
				
					|  |  |  |  |            input_dim_idx = 1, | 
			
		
	
		
			
				
					|  |  |  |  |            result.shape[1] = input.shape[1],  | 
			
		
	
		
			
				
					|  |  |  |  |            then: | 
			
		
	
		
			
				
					|  |  |  |  |                result=[[-0.23133647, -0.84195036,  0.21441269], | 
			
		
	
		
			
				
					|  |  |  |  |                        [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3] | 
			
		
	
		
			
				
					|  |  |  |  |     Args: | 
			
		
	
		
			
				
					|  |  |  |  |         input (Variable): ${input_comment} | 
			
		
	
		
			
				
					|  |  |  |  |         shape (tuple|list): ${shape_comment} | 
			
		
	
		
			
				
					|  |  |  |  |         input_dim_idx (Int): ${input_dim_idx_comment} | 
			
		
	
		
			
				
					|  |  |  |  |         output_dim_idx (Int): ${output_dim_idx_comment} | 
			
		
	
		
			
				
					|  |  |  |  |         min (Float): ${min_comment} | 
			
		
	
		
			
				
					|  |  |  |  |         max (Float): ${max_comment} | 
			
		
	
		
			
				
					|  |  |  |  |         seed (Int): ${seed_comment} | 
			
		
	
		
			
				
					|  |  |  |  |         dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc | 
			
		
	
		
			
				
					|  |  |  |  |         input (Variable): A Tensor. Supported data types: float32, float64. | 
			
		
	
		
			
				
					|  |  |  |  |         shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int. | 
			
		
	
		
			
				
					|  |  |  |  |         input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0.  | 
			
		
	
		
			
				
					|  |  |  |  |         output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0. | 
			
		
	
		
			
				
					|  |  |  |  |         min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0. | 
			
		
	
		
			
				
					|  |  |  |  |         max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0. | 
			
		
	
		
			
				
					|  |  |  |  |         seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time. | 
			
		
	
		
			
				
					|  |  |  |  |         dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32. | 
			
		
	
		
			
				
					|  |  |  |  |     Returns: | 
			
		
	
		
			
				
					|  |  |  |  |         out (Variable): ${out_comment} | 
			
		
	
		
			
				
					|  |  |  |  |         Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor. | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     Examples: | 
			
		
	
		
			
				
					|  |  |  |  |         .. code-block:: python | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |             import paddle.fluid as fluid | 
			
		
	
		
			
				
					|  |  |  |  |             import paddle.fluid.layers as layers  | 
			
		
	
		
			
				
					|  |  |  |  |              | 
			
		
	
		
			
				
					|  |  |  |  |             # example 1:  | 
			
		
	
		
			
				
					|  |  |  |  |             input = fluid.data(name="input", shape=[1, 3], dtype='float32') | 
			
		
	
		
			
				
					|  |  |  |  |             out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |             input = layers.data(name="input", shape=[13, 11], dtype='float32') | 
			
		
	
		
			
				
					|  |  |  |  |             out = layers.uniform_random_batch_size_like(input, [-1, 11]) | 
			
		
	
		
			
				
					|  |  |  |  |             # example 2:  | 
			
		
	
		
			
				
					|  |  |  |  |             out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |              | 
			
		
	
		
			
				
					|  |  |  |  |     """ | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     helper = LayerHelper('uniform_random_batch_size_like', **locals()) | 
			
		
	
	
		
			
				
					|  |  |  | @ -16982,8 +17018,8 @@ def mse_loss(input, label): | 
			
		
	
		
			
				
					|  |  |  |  | @templatedoc() | 
			
		
	
		
			
				
					|  |  |  |  | def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0): | 
			
		
	
		
			
				
					|  |  |  |  |     """ | 
			
		
	
		
			
				
					|  |  |  |  |     This operator initializes a variable with random values sampled from a | 
			
		
	
		
			
				
					|  |  |  |  |     uniform distribution. The random result is in set [min, max). | 
			
		
	
		
			
				
					|  |  |  |  |     This OP initializes a variable with random values sampled from a | 
			
		
	
		
			
				
					|  |  |  |  |     uniform distribution in the range [min, max). | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     Examples: | 
			
		
	
		
			
				
					|  |  |  |  |     :: | 
			
		
	
	
		
			
				
					|  |  |  | @ -16995,24 +17031,23 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0): | 
			
		
	
		
			
				
					|  |  |  |  |           result=[[0.8505902, 0.8397286]] | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     Args: | 
			
		
	
		
			
				
					|  |  |  |  |         shape (list|tuple|Variable): The shape of the output tensor, the data type of the integer is int, | 
			
		
	
		
			
				
					|  |  |  |  |                                      and if the shape type is list or tuple, its elements can be an integer | 
			
		
	
		
			
				
					|  |  |  |  |                                      or a tensor with the shape [1], the data type of the tensor is int64.  | 
			
		
	
		
			
				
					|  |  |  |  |                                      If the shape type is Variable,it ia a 1D tensor, the data type of the tensor is int64. | 
			
		
	
		
			
				
					|  |  |  |  |         dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the output tensor, such as float32, float64. | 
			
		
	
		
			
				
					|  |  |  |  |         shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple,  | 
			
		
	
		
			
				
					|  |  |  |  |                                      its elements can be an integer | 
			
		
	
		
			
				
					|  |  |  |  |                                      or a Tensor with the shape [1], and the type of the Tensor is int64.  | 
			
		
	
		
			
				
					|  |  |  |  |                                      If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor is int64. | 
			
		
	
		
			
				
					|  |  |  |  |         dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64. | 
			
		
	
		
			
				
					|  |  |  |  |                                                   Default: float32. | 
			
		
	
		
			
				
					|  |  |  |  |         min (float, optional): Minimum value of uniform random, It's a closed interval. Default -1.0. | 
			
		
	
		
			
				
					|  |  |  |  |         max (float, optional): Maximun value of uniform random, It's an open interval. Default 1.0. | 
			
		
	
		
			
				
					|  |  |  |  |         min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0. | 
			
		
	
		
			
				
					|  |  |  |  |         max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0. | 
			
		
	
		
			
				
					|  |  |  |  |         seed (int, optional): Random seed used for generating samples. 0 means use a | 
			
		
	
		
			
				
					|  |  |  |  |             seed generated by the system. Note that if seed is not 0, this | 
			
		
	
		
			
				
					|  |  |  |  |             operator will always generate the same random numbers every time. | 
			
		
	
		
			
				
					|  |  |  |  |             Default 0. | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     Returns: a Tensor with randomly initialized results whose data type is determined by the dtype parameter  | 
			
		
	
		
			
				
					|  |  |  |  |                 and whose dimension is determined by the shape parameter. | 
			
		
	
		
			
				
					|  |  |  |  |     Return type: Variable | 
			
		
	
		
			
				
					|  |  |  |  |     Returns:  | 
			
		
	
		
			
				
					|  |  |  |  |         Variable: A Tensor of the specified shape filled with uniform_random values. | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     Throw exception: | 
			
		
	
		
			
				
					|  |  |  |  |     Raises: | 
			
		
	
		
			
				
					|  |  |  |  |         TypeError: The shape type should be list or tupple or variable. | 
			
		
	
		
			
				
					|  |  |  |  |      | 
			
		
	
		
			
				
					|  |  |  |  |     Examples: | 
			
		
	
	
		
			
				
					|  |  |  | @ -17031,7 +17066,7 @@ def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0): | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |             # example 3: | 
			
		
	
		
			
				
					|  |  |  |  |             # attr shape is a Variable, the data type must be int64 | 
			
		
	
		
			
				
					|  |  |  |  |             var_shape = fluid.layers.data(name='var_shape',shape=[2],append_batch_size=False) | 
			
		
	
		
			
				
					|  |  |  |  |             var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64") | 
			
		
	
		
			
				
					|  |  |  |  |             result_3 = fluid.layers.uniform_random(var_shape) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     """ | 
			
		
	
	
		
			
				
					|  |  |  | 
 |