Merge remote-tracking branch 'upstream/develop' into factorization_machine_layer

release/0.11.0
wangmeng28 7 years ago
commit d6e35ecdd5

3
.gitignore vendored

@ -21,11 +21,10 @@ third_party/
cmake-build-*
# generated while compiling
python/paddle/v2/framework/core.so
python/paddle/v2/fluid/core.so
paddle/pybind/pybind.h
CMakeFiles
cmake_install.cmake
paddle/.timestamp
python/paddlepaddle.egg-info/
paddle/pybind/pybind.h
python/paddle/v2/framework/tests/tmp/*

@ -1,9 +1,7 @@
set -e
function train() {
unset OMP_NUM_THREADS MKL_NUM_THREADS
export OMP_DYNAMIC="FALSE"
export KMP_AFFINITY="granularity=fine,compact,0,0"
unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY
topology=$1
layer_num=$2
bs=$3
@ -14,8 +12,6 @@ function train() {
elif [ $4 == "False" ]; then
thread=`nproc`
# each trainer_count use only 1 core to avoid conflict
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
log="logs/${topology}-${layer_num}-${thread}mklml-${bs}.log"
else
echo "Wrong input $3, use True or False."

@ -98,7 +98,7 @@ IF(NOT ${CBLAS_FOUND})
ENDIF()
INSTALL(CODE "execute_process(
COMMAND ${CMAKE_COMMAND} -E copy_directory ${CBLAS_INSTALL_DIR}/lib
destination ${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}
${CMAKE_INSTALL_PREFIX}/${TMP_INSTALL_DIR}
)"
)
INSTALL(CODE "MESSAGE(STATUS \"Installing: \"

@ -0,0 +1,58 @@
## Evaluator Design
### The Problem
During training or serving, we provide the evaluation function to measure the model performance, e.g., accuracy, precision. In the operator based framework design, the data go through the network pipeline batch by batch. As a result, inside the operator, we only can calculate one minibatch metrics. We need to provide a mechanism to calculate the metrics for each N pass/batch the user wanted.
### Evaluator Design
Currently, every operation is expressed in the graph. we divide the evaluator process into three steps.
1. Initialize the metric state and add it into the block.
2. Calculate the statistic of the metric state in every mini-batch. The single operator is only responsible for calculating necessary statistics for one mini-batch. For example, accuracy operator only calculate a minibatch data if run once.
3. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. When it comes to distributed training/Multi-GPU training, aggregate the value from different devices.
### Implementation
This design is shown in python API.
Each metric operator need to caculate the metric statistic and return the batch aware states, Python side responsible for accumulate the states for each pass.
```python
class Evaluator(object):
"""
Evaluator Base class.
"""
def __init__(self, name, **kwargs):
"""
Different evaluator may has different metric states. E.g, Accuracy need two variables, total and right sample counts.
Auc need four variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives`. So every evaluator should create its needed variables and append to main_program
The initialization of Evaluator should be responsible for:
create metric states and append to the main_program
"""
pass
def _update_ops(self, input, label, **kwargs)
"""
Add mini-batch evaluator caculate operators to the main_program.
Add increment operator to accumulate the metric states.
"""
def reset(self, executor, reset_program=None):
"""
Reset metric states at the begin of each pass/user specified batch number.
Execute the reset_program to reset the states.
"""
def eval(self, executor, eval_program=None):
"""
Merge the mini-batch statistics to form the evaluation result for multiple mini-batches.
Execute the eval_program and return the result.
"""
return eval_result
```

@ -1,6 +1,6 @@
digraph G {
rnn [label="1-th level RNN" shape=box]
rnn [label="1st level RNN" shape=box]
subgraph cluster0 {
label = "time step 0"
@ -8,7 +8,7 @@ digraph G {
sent0 [label="sentence"]
sent1 [label="sentence"]
rnn1 [label="2-th level RNN" shape=box]
rnn1 [label="2nd level RNN" shape=box]
sent0 -> rnn1
sent1 -> rnn1
@ -20,7 +20,7 @@ digraph G {
sent2 [label="sentence"]
sent3 [label="sentence"]
rnn2 [label="2-th level RNN" shape=box]
rnn2 [label="2nd level RNN" shape=box]
sent2 -> rnn2
sent3 -> rnn2
@ -32,7 +32,7 @@ digraph G {
sent4 [label="sentence"]
sent5 [label="sentence"]
rnn3 [label="2-th level RNN" shape=box]
rnn3 [label="2nd level RNN" shape=box]
sent4 -> rnn3
sent5 -> rnn3

@ -1,62 +1,62 @@
# RNNOp design
This document is about an RNN operator which requires that instances in a mini-batch have the same length. We will have a more flexible RNN operator.
This document describes the RNN (Recurrent Neural Network) operator and how it is implemented in PaddlePaddle. The RNN op requires that all instances in a mini-batch have the same length. We will have a more flexible dynamic RNN operator in the future.
## RNN Algorithm Implementation
<p aligh="center">
<p align="center">
<img src="./images/rnn.jpg"/>
</p>
The above diagram shows an RNN unrolled into a full network.
There are several important concepts:
There are several important concepts here:
- *step-net*: the sub-graph to run at each step,
- *memory*, $h_t$, the state of the current step,
- *ex-memory*, $h_{t-1}$, the state of the previous step,
- *initial memory value*, the ex-memory of the first step.
- *step-net*: the sub-graph that runs at each step.
- *memory*, $h_t$, the state of the current step.
- *ex-memory*, $h_{t-1}$, the state of the previous step.
- *initial memory value*, the memory of the first (initial) step.
### Step-scope
There could be local variables defined in step-nets. PaddlePaddle runtime realizes these variables in *step-scopes* -- scopes created for each step.
There could be local variables defined in each step-net. PaddlePaddle runtime realizes these variables in *step-scopes* which are created for each step.
<p aligh="center">
<p align="center">
<img src="./images/rnn.png"/><br/>
Figure 2 the RNN's data flow
Figure 2 illustrates the RNN's data flow
</p>
Please be aware that all steps run the same step-net. Each step
Please be aware that every step runs the same step-net. Each step does the following:
1. creates the step-scope,
2. realizes local variables, including step-outputs, in the step-scope, and
3. runs the step-net, which could use these variables.
1. Creates the step-scope.
2. Initializes the local variables including step-outputs, in the step-scope.
3. Runs the step-net, which uses the above mentioned variables.
The RNN operator will compose its output from step outputs in step scopes.
The RNN operator will compose its output from step outputs in each of the step scopes.
### Memory and Ex-memory
Let's give more details about memory and ex-memory via a simply example:
Let's give more details about memory and ex-memory using a simple example:
$$
h_t = U h_{t-1} + W x_t
$$,
where $h_t$ and $h_{t-1}$ are the memory and ex-memory of step $t$'s respectively.
where $h_t$ and $h_{t-1}$ are the memory and ex-memory (previous memory) of step $t$ respectively.
In the implementation, we can make an ex-memory variable either "refers to" the memory variable of the previous step,
or copy the value of the previous memory value to the current ex-memory variable.
In the implementation, we can make an ex-memory variable either "refer to" the memory variable of the previous step,
or copy the memory value of the previous step to the current ex-memory variable.
### Usage in Python
For more information on Block, please refer to the [design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/block.md).
We can define an RNN's step-net using Block:
We can define an RNN's step-net using a Block:
```python
import paddle as pd
X = some_op() # x is some operator's output, and is a LoDTensor
X = some_op() # x is some operator's output and is a LoDTensor
a = some_op()
# declare parameters
@ -68,7 +68,7 @@ with rnn.stepnet():
x = rnn.add_input(X)
# declare a memory (rnn's step)
h = rnn.add_memory(init=a)
# h.pre_state() means previous memory of rnn
# h.pre_state(), the previous memory of rnn
new_state = pd.add_two( pd.matmul(W, x) + pd.matmul(U, h.pre_state()))
# update current memory
h.update(new_state)
@ -80,19 +80,19 @@ out = rnn()
Python API functions in above example:
- `rnn.add_input` indicates the parameter is a variable that will be segmented into step-inputs.
- `rnn.add_memory` creates a variable used as the memory.
- `rnn.add_outputs` mark the variables that will be concatenated across steps into the RNN output.
- `rnn.add_input`: indicates that the parameter is a variable that will be segmented into step-inputs.
- `rnn.add_memory`: creates a variable used as the memory.
- `rnn.add_outputs`: marks the variables that will be concatenated across steps into the RNN output.
### Nested RNN and LoDTensor
An RNN whose step-net includes other RNN operators is known as an *nested RNN*.
For example, we could have a 2-level RNN, where the top level corresponds to paragraphs, and the lower level corresponds to sentences.
For example, we could have a 2-level RNN, where the top level corresponds to paragraphs, and the lower level corresponds to sentences. Each step of the higher level RNN also receives an input from the corresponding step of the lower level, and additionally the output from the previous time step at the same level.
The following figure illustrates the feeding of text into the lower level, one sentence each step, and the feeding of step outputs to the top level. The final top level output is about the whole text.
The following figure illustrates feeding in text into the lower level, one sentence at a step, and the feeding in step outputs to the top level. The final top level output is about the whole text.
<p aligh="center">
<p align="center">
<img src="./images/2_level_rnn.png"/>
</p>
@ -110,7 +110,7 @@ a = some_op()
# chapter_data is a set of 128-dim word vectors
# the first level of LoD is sentence
# the second level of LoD is chapter
# the second level of LoD is a chapter
chapter_data = pd.Variable(shape=[None, 128], type=pd.lod_tensor, level=2)
def lower_level_rnn(paragraph):
@ -138,14 +138,14 @@ with top_level_rnn.stepnet():
pd.matmul(W0, paragraph_data) + pd.matmul(U0, h.pre_state()))
top_level_rnn.add_outputs(h)
# just output the last step
# output the last step
chapter_out = top_level_rnn(output_all_steps=False)
```
in above example, the construction of the `top_level_rnn` calls `lower_level_rnn`. The input is a LoD Tensor. The top level RNN segments input text data into paragraphs, and the lower level RNN segments each paragraph into sentences.
In the above example, the construction of the `top_level_rnn` calls `lower_level_rnn`. The input is an LoD Tensor. The top level RNN segments input text data into paragraphs, and the lower level RNN segments each paragraph into sentences.
By default, the `RNNOp` will concatenate the outputs from all the time steps,
if the `output_all_steps` set to False, it will only output the final time step.
By default, the `RNNOp` will concatenate the outputs from all the time steps.
If the `output_all_steps` is set to False, it will only output the final time step.
<p align="center">

@ -1,35 +1,28 @@
# Design: Sequence Decoder Generating LoDTensors
In tasks such as machine translation and image to text,
a [sequence decoder](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md) is necessary to generate sequences.
In tasks such as machine translation and visual captioning,
a [sequence decoder](https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/README.md) is necessary to generate sequences, one word at a time.
This documentation describes how to implement the sequence decoder as an operator.
## Beam Search based Decoder
The [beam search algorithm](https://en.wikipedia.org/wiki/Beam_search) is necessary when generating sequences,
it is a heuristic search algorithm that explores the paths by expanding the most promising node in a limited set.
The [beam search algorithm](https://en.wikipedia.org/wiki/Beam_search) is necessary when generating sequences. It is a heuristic search algorithm that explores the paths by expanding the most promising node in a limited set.
In the old version of PaddlePaddle, a C++ class `RecurrentGradientMachine` implements the general sequence decoder based on beam search,
due to the complexity, the implementation relays on a lot of special data structures,
quite trivial and hard to be customized by users.
In the old version of PaddlePaddle, the C++ class `RecurrentGradientMachine` implements the general sequence decoder based on beam search, due to the complexity involved, the implementation relies on a lot of special data structures that are quite trivial and hard to be customized by users.
There are a lot of heuristic tricks in the sequence generation tasks,
so the flexibility of sequence decoder is very important to users.
There are a lot of heuristic tricks in the sequence generation tasks, so the flexibility of sequence decoder is very important to users.
During PaddlePaddle's refactoring work,
some new concept is proposed such as [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md) and [TensorArray](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/tensor_array.md) that can better support sequence usage,
and they can help to make the implementation of beam search based sequence decoder **more transparent and modular** .
During the refactoring of PaddlePaddle, some new concepts are proposed such as: [LoDTensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md) and [TensorArray](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/tensor_array.md) that can better support the sequence usage, and they can also help make the implementation of beam search based sequence decoder **more transparent and modular** .
For example, the RNN sates, candidates IDs and probabilities of beam search can be represented as `LoDTensors`;
For example, the RNN states, candidates IDs and probabilities of beam search can be represented all as `LoDTensors`;
the selected candidate's IDs in each time step can be stored in a `TensorArray`, and `Packed` to the sentences translated.
## Changing LoD's absolute offset to relative offsets
The current `LoDTensor` is designed to store levels of variable-length sequences,
it stores several arrays of integers each represents a level.
The current `LoDTensor` is designed to store levels of variable-length sequences. It stores several arrays of integers where each represents a level.
The integers in each level represents the begin and end (not inclusive) offset of a sequence **in the underlying tensor**,
let's call this format the **absolute-offset LoD** for clear.
The integers in each level represent the begin and end (not inclusive) offset of a sequence **in the underlying tensor**,
let's call this format the **absolute-offset LoD** for clarity.
The relative-offset LoD can fast retrieve any sequence but fails to represent empty sequences, for example, a two-level LoD is as follows
The relative-offset LoD can retrieve any sequence very quickly but fails to represent empty sequences, for example, a two-level LoD is as follows
```python
[[0, 3, 9]
[0, 2, 3, 3, 3, 9]]
@ -41,10 +34,9 @@ The first level tells that there are two sequences:
while on the second level, there are several empty sequences that both begin and end at `3`.
It is impossible to tell how many empty second-level sequences exist in the first-level sequences.
There are many scenarios that relay on empty sequence representation,
such as machine translation or image to text, one instance has no translations or the empty candidate set for a prefix.
There are many scenarios that rely on empty sequence representation, for example in machine translation or visual captioning, one instance has no translation or the empty candidate set for a prefix.
So let's introduce another format of LoD,
So let's introduce another format of LoD,
it stores **the offsets of the lower level sequences** and is called **relative-offset** LoD.
For example, to represent the same sequences of the above data
@ -54,19 +46,18 @@ For example, to represent the same sequences of the above data
[0, 2, 3, 3, 3, 9]]
```
the first level represents that there are two sequences,
the first level represents that there are two sequences,
their offsets in the second-level LoD is `[0, 3)` and `[3, 5)`.
The second level is the same with the relative offset example because the lower level is a tensor.
It is easy to find out the second sequence in the first-level LoD has two empty sequences.
The following demos are based on relative-offset LoD.
The following examples are based on relative-offset LoD.
## Usage in a simple machine translation model
Let's start from a simple machine translation model that is simplified from [machine translation chapter](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation) to draw a simple blueprint of what a sequence decoder can do and how to use it.
Let's start from a simple machine translation model that is simplified from the [machine translation chapter](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation) to draw a blueprint of what a sequence decoder can do and how to use it.
The model has an encoder that learns the semantic vector from a sequence,
and a decoder which uses the sequence decoder to generate new sentences.
The model has an encoder that learns the semantic vector from a sequence, and a decoder which uses the sequence encoder to generate new sentences.
**Encoder**
```python
@ -117,7 +108,7 @@ def generate():
# which means there are 2 sentences to translate
# - the first sentence has 1 translation prefixes, the offsets are [0, 1)
# - the second sentence has 2 translation prefixes, the offsets are [1, 3) and [3, 6)
# the target_word.lod is
# the target_word.lod is
# [[0, 1, 6]
# [0, 2, 4, 7, 9 12]]
# which means 2 sentences to translate, each has 1 and 5 prefixes
@ -154,37 +145,36 @@ def generate():
translation_ids, translation_scores = decoder()
```
The `decoder.beam_search` is a operator that given the candidates and the scores of translations including the candidates,
return the result of the beam search algorithm.
The `decoder.beam_search` is an operator that, given the candidates and the scores of translations including the candidates,
returns the result of the beam search algorithm.
In this way, users can customize anything on the inputs or outputs of beam search, for example, two ways to prune some translation prefixes
In this way, users can customize anything on the input or output of beam search, for example:
1. meke the correspondind elements in `topk_generated_scores` zero or some small values, beam_search will discard this candidate.
2. remove some specific candidate in `selected_ids`
3. get the final `translation_ids`, remove the translation sequence in it.
1. Make the corresponding elements in `topk_generated_scores` zero or some small values, beam_search will discard this candidate.
2. Remove some specific candidate in `selected_ids`.
3. Get the final `translation_ids`, remove the translation sequence in it.
The implementation of sequence decoder can reuse the C++ class [RNNAlgorithm](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/paddle/operators/dynamic_recurrent_op.h#L30),
so the python syntax is quite similar to a [RNN](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/doc/design/block.md#blocks-with-for-and-rnnop).
The implementation of sequence decoder can reuse the C++ class: [RNNAlgorithm](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/paddle/operators/dynamic_recurrent_op.h#L30),
so the python syntax is quite similar to that of an [RNN](https://github.com/Superjom/Paddle/blob/68cac3c0f8451fe62a4cdf156747d6dc0ee000b3/doc/design/block.md#blocks-with-for-and-rnnop).
Both of them are two-level `LoDTensors`
Both of them are two-level `LoDTensors`:
- the first level represents `batch_size` of (source) sentences;
- the second level represents the candidate ID sets for translation prefix.
- The first level represents `batch_size` of (source) sentences.
- The second level represents the candidate ID sets for translation prefix.
for example, 3 source sentences to translate, and has 2, 3, 1 candidates.
For example, 3 source sentences to translate, and has 2, 3, 1 candidates.
Unlike an RNN, in sequence decoder, the previous state and the current state have different LoD and shape,
a `lod_expand` operator is used to expand the LoD of the previous state to fit the current state.
Unlike an RNN, in sequence decoder, the previous state and the current state have different LoD and shape, and an `lod_expand` operator is used to expand the LoD of the previous state to fit the current state.
For example, the previous state
For example, the previous state:
* LoD is `[0, 1, 3][0, 2, 5, 6]`
* content of tensor is `a1 a2 b1 b2 b3 c1`
the current state stored in `encoder_ctx_expanded`
the current state is stored in `encoder_ctx_expanded`:
* LoD is `[0, 2, 7][0 3 5 8 9 11 11]`
* the content is
* the content is
- a1 a1 a1 (a1 has 3 candidates, so the state should be copied 3 times for each candidates)
- a2 a2
- b1 b1 b1
@ -192,54 +182,48 @@ the current state stored in `encoder_ctx_expanded`
- b3 b3
- None (c1 has 0 candidates, so c1 is dropped)
Benefit from the relative offset LoD, empty candidate set can be represented naturally.
The benefit from the relative offset LoD is that the empty candidate set can be represented naturally.
the status in each time step can be stored in `TensorArray`, and `Pack`ed to a final LoDTensor, the corresponding syntax is
The status in each time step can be stored in `TensorArray`, and `Pack`ed to a final LoDTensor. The corresponding syntax is:
```python
decoder.output(selected_ids)
decoder.output(selected_generation_scores)
```
the `selected_ids` is the candidate ids for the prefixes,
it will be `Packed` by `TensorArray` to a two-level `LoDTensor`,
the first level represents the source sequences,
the second level represents generated sequences.
The `selected_ids` are the candidate ids for the prefixes, and will be `Packed` by `TensorArray` to a two-level `LoDTensor`, where the first level represents the source sequences and the second level represents generated sequences.
Pack the `selected_scores` will get a `LoDTensor` that stores scores of each candidate of translations.
Packing the `selected_scores` will get a `LoDTensor` that stores scores of each translation candidate.
Pack the `selected_generation_scores` will get a `LoDTensor`, and each tail is the probability of the translation.
Packing the `selected_generation_scores` will get a `LoDTensor`, and each tail is the probability of the translation.
## LoD and shape changes during decoding
<p align="center">
<img src="./images/LOD-and-shape-changes-during-decoding.jpg"/>
</p>
According the image above, the only phrase to change LoD is beam search.
According to the image above, the only phase that changes the LoD is beam search.
## Beam search design
The beam search algorthm will be implemented as one method of the sequence decoder, it has 3 inputs
The beam search algorithm will be implemented as one method of the sequence decoder and has 3 inputs:
1. `topk_ids`, top K candidate ids for each prefix.
1. `topk_ids`, the top K candidate ids for each prefix.
2. `topk_scores`, the corresponding scores for `topk_ids`
3. `generated_scores`, the score of the prefixes.
All of the are LoDTensors, so that the sequence affilication is clear.
Beam search will keep a beam for each prefix and select a smaller candidate set for each prefix.
All of these are LoDTensors, so that the sequence affiliation is clear. Beam search will keep a beam for each prefix and select a smaller candidate set for each prefix.
It will return three variables
It will return three variables:
1. `selected_ids`, the final candidate beam search function selected for the next step.
2. `selected_scores`, the scores for the candidates.
3. `generated_scores`, the updated scores for each prefixes (with the new candidates appended).
3. `generated_scores`, the updated scores for each prefix (with the new candidates appended).
## Introducing the LoD-based `Pack` and `Unpack` methods in `TensorArray`
The `selected_ids`, `selected_scores` and `generated_scores` are LoDTensors,
and they exist in each time step,
The `selected_ids`, `selected_scores` and `generated_scores` are LoDTensors that exist at each time step,
so it is natural to store them in arrays.
Currently, PaddlePaddle has a module called `TensorArray` which can store an array of tensors,
the results of beam search are better to store in a `TensorArray`.
Currently, PaddlePaddle has a module called `TensorArray` which can store an array of tensors. It is better to store the results of beam search in a `TensorArray`.
The `Pack` and `UnPack` in `TensorArray` are used to package tensors in the array to a `LoDTensor` or split the `LoDTensor` to an array of tensors.
It needs some extensions to support pack or unpack an array of `LoDTensors`.
The `Pack` and `UnPack` in `TensorArray` are used to pack tensors in the array to an `LoDTensor` or split the `LoDTensor` to an array of tensors.
It needs some extensions to support the packing or unpacking an array of `LoDTensors`.

@ -29,6 +29,9 @@ static void initPaddle(int argc, char** argv) {
extern "C" {
paddle_error paddle_init(int argc, char** argv) {
static bool isInit = false;
if (isInit) return kPD_NO_ERROR;
std::vector<char*> realArgv;
realArgv.reserve(argc + 1);
realArgv.push_back(strdup(""));
@ -37,6 +40,7 @@ paddle_error paddle_init(int argc, char** argv) {
}
initPaddle(argc + 1, realArgv.data());
free(realArgv[0]);
isInit = true;
return kPD_NO_ERROR;
}
}

@ -121,6 +121,7 @@ paddle_error paddle_matrix_get_shape(paddle_matrix mat,
paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu) {
#ifndef PADDLE_MOBILE_INFERENCE
auto ptr = new paddle::capi::CMatrix();
ptr->mat = paddle::Matrix::createSparseMatrix(
height,
@ -131,6 +132,9 @@ paddle_matrix paddle_matrix_create_sparse(
false,
useGpu);
return ptr;
#else
return nullptr;
#endif
}
paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
@ -140,6 +144,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
uint64_t colSize,
float* valueArray,
uint64_t valueSize) {
#ifndef PADDLE_MOBILE_INFERENCE
if (mat == nullptr) return kPD_NULLPTR;
auto ptr = cast(mat);
if (rowArray == nullptr || colArray == nullptr ||
@ -160,4 +165,7 @@ paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
} else {
return kPD_NOT_SUPPORTED;
}
#else
return kPD_NOT_SUPPORTED;
#endif
}

@ -48,6 +48,7 @@ PD_API paddle_matrix paddle_matrix_create(uint64_t height,
* @param isBinary is binary (either 1 or 0 in matrix) or not.
* @param useGpu is using GPU or not.
* @return paddle_matrix.
* @note Mobile inference does not support this interface.
*/
PD_API paddle_matrix paddle_matrix_create_sparse(
uint64_t height, uint64_t width, uint64_t nnz, bool isBinary, bool useGpu);
@ -129,6 +130,7 @@ PD_API paddle_error paddle_matrix_get_shape(paddle_matrix mat,
* NULL if the matrix is binary.
* @param [in] valueSize length of value array. Zero if the matrix is binary.
* @return paddle_error
* @note Mobile inference does not support this interface.
*/
PD_API paddle_error paddle_matrix_sparse_copy_from(paddle_matrix mat,
int* rowArray,

@ -27,7 +27,9 @@ if(WITH_GPU)
set_source_files_properties(${CUDA_CXX_SOURCES}
PROPERTIES COMPILE_FLAGS "-D__NVCC__")
else()
if (NOT MOBILE_INFERENCE)
set(CUDA_CXX_SOURCES src/hl_warpctc_wrap.cc)
endif()
endif()
set(CUDA_CU_SOURCES

@ -18,7 +18,7 @@ limitations under the License. */
#include "hl_base.h"
/**
* @brief Maximum pool forward.
* @brief Maximum pool forward with Mask output.
*
* @param[in] frameCnt batch size of input image.
* @param[in] inputData input data.
@ -35,7 +35,7 @@ limitations under the License. */
* @param[in] paddingW padding width.
* @param[out] tgtData output data.
* @param[in] tgtStride stride between output data samples.
*
* @param[out] maskData the location indices of select max data.
*/
extern void hl_maxpool_forward(const int frameCnt,
const real* inputData,
@ -51,7 +51,8 @@ extern void hl_maxpool_forward(const int frameCnt,
const int paddingH,
const int paddingW,
real* tgtData,
const int tgtStride);
const int tgtStride,
real* maskData = NULL);
/**
* @brief Maximum pool backward.

@ -31,7 +31,8 @@ inline void hl_maxpool_forward(const int frameCnt,
const int paddingH,
const int paddingW,
real* tgtData,
const int tgtStride) {}
const int tgtStride,
real* MaskData) {}
inline void hl_maxpool_backward(const int frameCnt,
const real* inputData,

@ -31,7 +31,8 @@ __global__ void KeMaxPoolForward(const int nthreads,
const int offsetH,
const int offsetW,
real* tgtData,
const int tgtStride) {
const int tgtStride,
real* maskData) {
int index = blockIdx.x * blockDim.x + threadIdx.x;
if (index < nthreads) {
int pw = index % pooledW;
@ -45,16 +46,22 @@ __global__ void KeMaxPoolForward(const int nthreads,
hstart = max(hstart, 0);
wstart = max(wstart, 0);
real maxval = -FLT_MAX;
int max_index = -1;
inputData += (frameNum * channels + c) * height * width;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
if (maxval < inputData[h * width + w])
maxval = inputData[h * width + w];
if (maxval < inputData[h * width + w]) {
max_index = h * width + w;
maxval = inputData[max_index];
}
}
}
int tgtIndex =
index % (pooledW * pooledH * channels) + frameNum * tgtStride;
tgtData[tgtIndex] = maxval;
if (maskData != NULL) {
maskData[tgtIndex] = max_index;
}
}
}
@ -72,7 +79,8 @@ void hl_maxpool_forward(const int frameCnt,
const int paddingH,
const int paddingW,
real* tgtData,
const int tgtStride) {
const int tgtStride,
real* maskData) {
int num_kernels = pooledH * pooledW * channels * frameCnt;
int blocks = (num_kernels + 1024 - 1) / 1024;
dim3 threads(1024, 1);
@ -92,7 +100,8 @@ void hl_maxpool_forward(const int frameCnt,
paddingH,
paddingW,
tgtData,
tgtStride);
tgtStride,
maskData);
CHECK_SYNC("hl_maxpool_forward failed");
}

@ -38,9 +38,9 @@ py_proto_compile(framework_py_proto SRCS framework.proto)
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
add_custom_command(TARGET framework_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto
COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto/
COMMENT "Copy generated python proto into directory paddle/v2/framework/proto."
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/v2/fluid/proto
COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/v2/fluid/proto/
COMMENT "Copy generated python proto into directory paddle/v2/fluid/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
cc_library(backward SRCS backward.cc DEPS net_op)

@ -61,6 +61,7 @@ public:
// function arguments
strides_ = config.get<std::vector<size_t>>("strides");
paddings_ = config.get<std::vector<size_t>>("paddings");
dilations_ = config.get<std::vector<size_t>>("dilations");
groups_ = config.get<size_t>("groups");
// number of inputs and outputs
@ -118,6 +119,7 @@ protected:
std::vector<size_t> strides_;
std::vector<size_t> paddings_;
std::vector<size_t> dilations_;
/// Group size, refer to grouped convolution in
/// Alex Krizhevsky's paper: when group=2, the first half of the
@ -133,6 +135,10 @@ protected:
inline int paddingW() const { return paddings_[1]; }
inline int dilationH() const { return dilations_[0]; }
inline int dilationW() const { return dilations_[1]; }
// A temporary memory in convolution calculation.
MemoryHandlePtr memory_;

@ -79,45 +79,59 @@ void Convolution(const std::string& conv1,
if (outputChannels < inputChannels) continue;
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
for (size_t dilation : {1, 3}) {
if (padding >= filterSize) break;
size_t filterS = (filterSize - 1) * dilation + 1;
// NNPACK only supports stride = 1 if batchSize > 1
if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
batchSize > 1 && stride > 1)
break;
if (inputSize + 2 * padding < filterS) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize << " stride=" << stride
<< " padding=" << padding;
if ((conv1 == "NaiveConv-CPU" || conv2 == "NaiveConv-CPU" ||
conv1 == "NNPACKConv-CPU" ||
conv2 == "NNPACKConv-CPU") &&
dilation > 1)
break;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
// NNPACK only supports stride = 1 if batchSize > 1
if ((conv1 == "NNPACKConv-CPU" ||
conv2 == "NNPACKConv-CPU") &&
batchSize > 1 && stride > 1)
break;
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
size_t outputSize =
(inputSize - filterS + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
function(test, input, filter, output);
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
std::vector<size_t> dilations = {dilation, dilation};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
function(test, input, filter, output);
}
}
}
}
@ -144,6 +158,7 @@ void Convolution2(const std::string& conv1,
for (size_t outputChannels : {7}) {
size_t stride = 1;
size_t padding = 0;
size_t dilation = 1;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
@ -162,6 +177,7 @@ void Convolution2(const std::string& conv1,
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
std::vector<size_t> dilations = {dilation, dilation};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
@ -169,6 +185,7 @@ void Convolution2(const std::string& conv1,
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("dilations", dilations)
.set("algo", (std::string) "auto"));
TensorShape input{
@ -223,6 +240,7 @@ void DepthwiseConvolution(const std::string& conv1,
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
std::vector<size_t> dilations = {1, 1};
size_t groups = inputChannels;
Compare2Function<DType1, DType2> test(
conv1,
@ -231,6 +249,7 @@ void DepthwiseConvolution(const std::string& conv1,
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("dilations", dilations)
.set("algo", (std::string) "auto"));
TensorShape input{

@ -100,7 +100,9 @@ public:
strideH(),
strideW(),
paddingH(),
paddingW());
paddingW(),
dilationH(),
dilationW());
} else {
colData = inputData + g * inputOffset;
}
@ -223,7 +225,9 @@ public:
strideH(),
strideW(),
paddingH(),
paddingW());
paddingW(),
dilationH(),
dilationW());
}
}
inputGrad += inputChannels * inputHeight * inputWidth;
@ -310,7 +314,9 @@ public:
strideH(),
strideW(),
paddingH(),
paddingW());
paddingW(),
dilationH(),
dilationW());
} else {
colData = inputData + g * inputOffset;
}

@ -78,7 +78,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth);
int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1);
};
template <ColFormat Format, DeviceType Device, class T>
@ -91,7 +93,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth);
int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1);
};
} // namespace paddle

@ -31,7 +31,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -47,8 +49,8 @@ public:
int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset;
int imColIdx = w * strideWidth + wOffset;
int imRowIdx = h * strideHeight + hOffset * dilationHeight;
int imColIdx = w * strideWidth + wOffset * dilationWidth;
if ((imRowIdx - paddingHeight) < 0 ||
(imRowIdx - paddingHeight) >= inputHeight ||
(imColIdx - paddingWidth) < 0 ||
@ -81,7 +83,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -97,8 +101,8 @@ public:
int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset;
int imColIdx = w * strideWidth + wOffset;
int imRowIdx = h * strideHeight + hOffset * dilationHeight;
int imColIdx = w * strideWidth + wOffset * dilationWidth;
if ((imRowIdx - paddingHeight) >= 0 &&
(imRowIdx - paddingHeight) < inputHeight &&
(imColIdx - paddingWidth) >= 0 &&
@ -134,7 +138,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -147,9 +153,10 @@ public:
for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset =
outputH * strideHeight + filterH - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
int imRowOffset = outputH * strideHeight +
filterH * dilationHeight - paddingHeight;
int imColOffset = outputW * strideWidth +
filterW * dilationWidth - paddingWidth;
int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels +
channel) *
@ -189,7 +196,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight = 1,
int dilationWidth = 1) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -202,9 +211,10 @@ public:
for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset =
outputH * strideHeight + filterH - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
int imRowOffset = outputH * strideHeight +
filterH * dilationHeight - paddingHeight;
int imColOffset = outputW * strideWidth +
filterW * dilationWidth - paddingWidth;
int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels +
channel) *

@ -28,6 +28,8 @@ __global__ void im2col(const T* data_im,
int strideW,
int paddingH,
int paddingW,
int dilationH,
int dilationW,
int height_col,
int width_col,
T* data_col) {
@ -44,8 +46,8 @@ __global__ void im2col(const T* data_im,
data_col += (channel_out * height_col + h_out) * width_col + w_out;
for (int i = 0; i < blockH; ++i) {
for (int j = 0; j < blockW; ++j) {
int rIdx = int(h_in + i);
int cIdx = int(w_in + j);
int rIdx = int(h_in + i * dilationH);
int cIdx = int(w_in + j * dilationW);
if ((rIdx - (int)paddingH) >= (int)height ||
(rIdx - (int)paddingH) < 0 ||
(cIdx - (int)paddingW) >= (int)width ||
@ -77,7 +79,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -102,6 +106,8 @@ public:
strideWidth,
paddingHeight,
paddingWidth,
dilationHeight,
dilationWidth,
outputHeight,
outputWidth,
colData);
@ -121,6 +127,8 @@ __global__ void col2im(size_t n,
size_t strideW,
size_t paddingH,
size_t paddingW,
size_t dilationH,
size_t dilationW,
size_t height_col,
size_t width_col,
T* data_im) {
@ -131,23 +139,34 @@ __global__ void col2im(size_t n,
int w = int(index % width);
int h = int((index / width) % height);
int c = int(index / (width * height));
int filterH = (blockH - 1) * dilationH + 1;
int filterW = (blockW - 1) * dilationW + 1;
if ((w - (int)paddingW) >= 0 &&
(w - (int)paddingW) < (width - 2 * paddingW) &&
(h - (int)paddingH) >= 0 && (h - paddingH) < (height - 2 * paddingH)) {
// compute the start and end of the output
int w_col_start =
(w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1;
(w < (int)filterW) ? 0 : (w - int(filterW)) / (int)strideW + 1;
int w_col_end = min((int)(w / (int)strideW + 1), (int)(width_col));
int h_col_start =
(h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1;
(h < (int)filterH) ? 0 : (h - (int)filterH) / (int)strideH + 1;
int h_col_end = min(int(h / strideH + 1), int(height_col));
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
// the col location: [c * width * height + h_out, w_out]
int c_col = int(c * blockH * blockW) +
(h - h_col * (int)strideH) * (int)blockW +
(w - w_col * (int)strideW);
val += data_col[(c_col * height_col + h_col) * width_col + w_col];
int h_k = (h - h_col * strideH);
int w_k = (w - w_col * strideW);
if (h_k % dilationH == 0 && w_k % dilationW == 0) {
h_k /= dilationH;
w_k /= dilationW;
int c_col =
(((c * blockH + h_k) * blockW + w_k) * height_col + h_col) *
width_col +
w_col;
val += data_col[c_col];
}
}
}
h -= paddingH;
@ -173,7 +192,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -205,6 +226,8 @@ public:
strideWidth,
paddingHeight,
paddingWidth,
dilationHeight,
dilationWidth,
outputHeight,
outputWidth,
imData);
@ -229,6 +252,8 @@ __global__ void im2colOCF(const T* imData,
int strideWidth,
int paddingHeight,
int paddingWidth,
int dilationHeight,
int dilationWidth,
int outputHeight,
int outputWidth) {
int swId = blockIdx.x;
@ -237,8 +262,10 @@ __global__ void im2colOCF(const T* imData,
channelId += blockDim.z) {
for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) {
for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) {
int widthOffset = idx + swId * strideWidth - paddingWidth;
int heightOffset = idy + shId * strideHeight - paddingHeight;
int widthOffset =
idx * dilationHeight + swId * strideWidth - paddingWidth;
int heightOffset =
idy * dilationWidth + shId * strideHeight - paddingHeight;
int imOffset = widthOffset + heightOffset * inputWidth +
channelId * inputHeight * inputWidth;
@ -273,7 +300,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -312,6 +341,8 @@ public:
strideWidth,
paddingHeight,
paddingWidth,
dilationHeight,
dilationWidth,
outputHeight,
outputWidth);
CHECK_SYNC("Im2ColFunctor GPU failed");
@ -330,6 +361,8 @@ __global__ void col2imOCF(T* imData,
int strideWidth,
int paddingHeight,
int paddingWidth,
int dilationHeight,
int dilationWidth,
int outputHeight,
int outputWidth) {
int swId = blockIdx.x;
@ -338,8 +371,10 @@ __global__ void col2imOCF(T* imData,
channelId += blockDim.z) {
for (int idy = threadIdx.y; idy < filterHeight; idy += blockDim.y) {
for (int idx = threadIdx.x; idx < filterWidth; idx += blockDim.x) {
int widthOffset = idx + swId * strideWidth - paddingWidth;
int heightOffset = idy + shId * strideHeight - paddingHeight;
int widthOffset =
idx * dilationWidth + swId * strideWidth - paddingWidth;
int heightOffset =
idy * dilationHeight + shId * strideHeight - paddingHeight;
int imOffset = widthOffset + heightOffset * inputWidth +
channelId * inputHeight * inputWidth;
@ -372,7 +407,9 @@ public:
int strideHeight,
int strideWidth,
int paddingHeight,
int paddingWidth) {
int paddingWidth,
int dilationHeight,
int dilationWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
@ -411,6 +448,8 @@ public:
strideWidth,
paddingHeight,
paddingWidth,
dilationHeight,
dilationWidth,
outputHeight,
outputWidth);
CHECK_SYNC("Col2ImFunctor GPU failed");

@ -29,82 +29,98 @@ void TestIm2ColFunctor() {
for (size_t filterWidth : {3, 7}) {
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (inputHeight <= filterHeight || inputWidth <= filterWidth)
break;
if (padding >= filterHeight || padding >= filterWidth) break;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
size_t outputWidth =
(inputWidth - filterWidth + 2 * padding + stride) / stride;
TensorShape imShape =
TensorShape({channels, inputHeight, inputWidth});
TensorShape colShape1 = TensorShape({channels,
filterHeight,
filterWidth,
outputHeight,
outputWidth});
TensorShape colShape2 = TensorShape({outputHeight,
outputWidth,
channels,
filterHeight,
filterWidth});
size_t height = channels * filterHeight * filterWidth;
size_t width = outputHeight * outputWidth;
VectorPtr input1 = Vector::create(imShape.getElements(), false);
VectorPtr input2 = Vector::create(imShape.getElements(), false);
MatrixPtr output1 = Matrix::create(height, width, false, false);
MatrixPtr output2 = Matrix::create(width, height, false, false);
input1->uniform(0.001, 1);
input2->copyFrom(*input1);
Im2ColFunctor<kCFO, Device, T> im2Col1;
Im2ColFunctor<kOCF, Device, T> im2Col2;
im2Col1(input1->getData(),
imShape,
output1->getData(),
colShape1,
stride,
stride,
padding,
padding);
im2Col2(input2->getData(),
imShape,
output2->getData(),
colShape2,
stride,
stride,
padding,
padding);
// The transposition of the result of ColFormat == kCFO
// is equal to the result of ColFormat == kOCF.
MatrixPtr test;
output2->transpose(test, true);
autotest::TensorCheckErr(*output1, *test);
Col2ImFunctor<kCFO, Device, T> col2Im1;
Col2ImFunctor<kOCF, Device, T> col2Im2;
col2Im1(input1->getData(),
imShape,
output1->getData(),
colShape1,
stride,
stride,
padding,
padding);
col2Im2(input2->getData(),
imShape,
output2->getData(),
colShape2,
stride,
stride,
padding,
padding);
autotest::TensorCheckErr(*input1, *input2);
for (size_t dilation : {1, 3}) {
size_t filterSizeH = (filterHeight - 1) * dilation + 1;
size_t filterSizeW = (filterWidth - 1) * dilation + 1;
if (inputHeight + 2 * padding < filterSizeH ||
inputWidth + 2 * padding < filterSizeW)
break;
if (padding >= filterSizeH || padding >= filterSizeW) break;
size_t outputHeight =
(inputHeight - filterSizeH + 2 * padding) / stride + 1;
size_t outputWidth =
(inputWidth - filterSizeW + 2 * padding) / stride + 1;
TensorShape imShape =
TensorShape({channels, inputHeight, inputWidth});
TensorShape colShape1 = TensorShape({channels,
filterHeight,
filterWidth,
outputHeight,
outputWidth});
TensorShape colShape2 = TensorShape({outputHeight,
outputWidth,
channels,
filterHeight,
filterWidth});
size_t height = channels * filterHeight * filterWidth;
size_t width = outputHeight * outputWidth;
VectorPtr input1 =
Vector::create(imShape.getElements(), false);
VectorPtr input2 =
Vector::create(imShape.getElements(), false);
MatrixPtr output1 =
Matrix::create(height, width, false, false);
MatrixPtr output2 =
Matrix::create(width, height, false, false);
input1->uniform(0.001, 1);
input2->copyFrom(*input1);
Im2ColFunctor<kCFO, Device, T> im2Col1;
Im2ColFunctor<kOCF, Device, T> im2Col2;
im2Col1(input1->getData(),
imShape,
output1->getData(),
colShape1,
stride,
stride,
padding,
padding,
dilation,
dilation);
im2Col2(input2->getData(),
imShape,
output2->getData(),
colShape2,
stride,
stride,
padding,
padding,
dilation,
dilation);
// The transposition of the result of ColFormat == kCFO
// is equal to the result of ColFormat == kOCF.
MatrixPtr test;
output2->transpose(test, true);
autotest::TensorCheckErr(*output1, *test);
Col2ImFunctor<kCFO, Device, T> col2Im1;
Col2ImFunctor<kOCF, Device, T> col2Im2;
col2Im1(input1->getData(),
imShape,
output1->getData(),
colShape1,
stride,
stride,
padding,
padding,
dilation,
dilation);
col2Im2(input2->getData(),
imShape,
output2->getData(),
colShape2,
stride,
stride,
padding,
padding,
dilation,
dilation);
autotest::TensorCheckErr(*input1, *input2);
}
}
}
}

@ -85,9 +85,49 @@ if(MOBILE_INFERENCE)
gradientmachines/GradientMachineMode.cpp
gradientmachines/MultiGradientMachine.cpp)
# Remove useless layers
# Remove layers that used in training
list(REMOVE_ITEM GSERVER_SOURCES
layers/RecurrentLayerGroup.cpp)
layers/RecurrentLayerGroup.cpp
layers/CostLayer.cpp
layers/MultiBoxLossLayer.cpp
layers/WarpCTCLayer.cpp
layers/CTCLayer.cpp
layers/LinearChainCTC.cpp
layers/PrintLayer.cpp)
list(REMOVE_ITEM GSERVER_SOURCES
layers/OuterProdLayer.cpp
layers/SumToOneNormLayer.cpp
layers/ConvShiftLayer.cpp
layers/InterpolationLayer.cpp
layers/AgentLayer.cpp
layers/DotMulOperator.cpp
layers/GruStepLayer.cpp
layers/LstmStepLayer.cpp
layers/ConvexCombinationLayer.cpp
layers/Conv3DLayer.cpp
layers/DeConv3DLayer.cpp
layers/CropLayer.cpp
layers/CrossEntropyOverBeam.cpp
layers/DataNormLayer.cpp
layers/FeatureMapExpandLayer.cpp
layers/HierarchicalSigmoidLayer.cpp
layers/MultinomialSampler.cpp
layers/NCELayer.cpp
layers/KmaxSeqScoreLayer.cpp
layers/MDLstmLayer.cpp
layers/MultiplexLayer.cpp
layers/PadLayer.cpp
layers/Pool3DLayer.cpp
layers/ResizeLayer.cpp
layers/RotateLayer.cpp
layers/RowConvLayer.cpp
layers/RowL2NormLayer.cpp
layers/SamplingIdLayer.cpp
layers/ScaleShiftLayer.cpp
layers/SelectiveFullyConnectedLayer.cpp
layers/SpatialPyramidPoolLayer.cpp
layers/BilinearInterpLayer.cpp
layers/ClipLayer.cpp)
endif()
if(WITH_GPU)

@ -16,7 +16,6 @@ limitations under the License. */
#include "NeuralNetwork.h"
#include "hl_gpu.h"
#include "paddle/gserver/layers/AgentLayer.h"
#include "paddle/utils/CustomStackTrace.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
@ -28,6 +27,7 @@ limitations under the License. */
#ifndef PADDLE_MOBILE_INFERENCE
#include "MultiNetwork.h"
#include "RecurrentGradientMachine.h"
#include "paddle/gserver/layers/AgentLayer.h"
#endif
namespace paddle {
@ -192,9 +192,11 @@ void NeuralNetwork::init(const ModelConfig& config,
void NeuralNetwork::connect(LayerPtr agentLayer,
LayerPtr realLayer,
int height) {
#ifndef PADDLE_MOBILE_INFERENCE
AgentLayer* agent = dynamic_cast<AgentLayer*>(agentLayer.get());
CHECK_NOTNULL(agent);
agent->setRealLayer(realLayer, height);
#endif
}
void NeuralNetwork::connect(std::string agentLayerName,

@ -79,6 +79,10 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
for (int i = 0; i < config_.inputs_size(); i++) {
std::vector<size_t> paddings = {(size_t)paddingY_[i], (size_t)padding_[i]};
std::vector<size_t> strides = {(size_t)strideY_[i], (size_t)stride_[i]};
std::vector<size_t> dilations = {(size_t)dilationY_[i],
(size_t)dilation_[i]};
bool useDilation = ((size_t)dilationY_[i] > 1 || (size_t)dilation_[i] > 1);
// Convolution Layer uses the GemmConv function by default.
convType = "GemmConv";
@ -97,13 +101,14 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
if ((filterSize_[i] == filterSizeY_[i]) &&
(filterSize_[i] == 3 || filterSize_[i] == 4) &&
(stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2)) {
(stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2) &&
!useDilation) {
convType = "NeonDepthwiseConv";
}
#endif
}
if (FLAGS_use_nnpack && !isDeconv_) {
if (FLAGS_use_nnpack && !isDeconv_ && !useDilation) {
createFunction(forward_,
"NNPACKConv",
FuncConfig()
@ -117,6 +122,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
@ -124,6 +130,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)groups_[i]));
createFunction(backward_,
@ -131,6 +138,7 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("dilations", dilations)
.set("groups", (size_t)groups_[i]));
}
}

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save