|
|
|
@ -200,7 +200,6 @@ def avg_pool1d(x,
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
|
|
|
|
|
out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
|
|
|
|
|
# out shape: [1, 3, 16]
|
|
|
|
@ -253,7 +252,7 @@ def avg_pool1d(x,
|
|
|
|
|
"use_cudnn": True,
|
|
|
|
|
"ceil_mode": ceil_mode,
|
|
|
|
|
"use_mkldnn": False,
|
|
|
|
|
"exclusive": not exclusive,
|
|
|
|
|
"exclusive": exclusive,
|
|
|
|
|
"data_format": data_format,
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
@ -314,7 +313,6 @@ def avg_pool2d(x,
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
# avg pool2d
|
|
|
|
|
x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
|
|
|
|
|
out = F.avg_pool2d(x,
|
|
|
|
@ -365,7 +363,7 @@ def avg_pool2d(x,
|
|
|
|
|
"use_cudnn": True,
|
|
|
|
|
"ceil_mode": ceil_mode,
|
|
|
|
|
"use_mkldnn": False,
|
|
|
|
|
"exclusive": not exclusive,
|
|
|
|
|
"exclusive": exclusive,
|
|
|
|
|
"data_format": data_format,
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
@ -481,7 +479,7 @@ def avg_pool3d(x,
|
|
|
|
|
"use_cudnn": True,
|
|
|
|
|
"ceil_mode": ceil_mode,
|
|
|
|
|
"use_mkldnn": False,
|
|
|
|
|
"exclusive": not exclusive,
|
|
|
|
|
"exclusive": exclusive,
|
|
|
|
|
"data_format": data_format,
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
@ -538,7 +536,6 @@ def max_pool1d(x,
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
|
|
|
|
|
pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
|
|
|
|
|
# pool_out shape: [1, 3, 16]
|
|
|
|
@ -661,7 +658,6 @@ def max_pool2d(x,
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
# max pool2d
|
|
|
|
|
x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
|
|
|
|
|
out = F.max_pool2d(x,
|
|
|
|
@ -791,7 +787,7 @@ def max_pool3d(x,
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
# max pool3d
|
|
|
|
|
x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
|
|
|
|
|
output = F.max_pool2d(x,
|
|
|
|
@ -905,7 +901,7 @@ def adaptive_avg_pool1d(x, output_size, name=None):
|
|
|
|
|
#
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
|
|
|
|
|
pool_out = F.adaptive_average_pool1d(data, output_size=16)
|
|
|
|
|
# pool_out shape: [1, 3, 16])
|
|
|
|
@ -982,7 +978,7 @@ def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
|
|
|
|
|
#
|
|
|
|
|
import paddle
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
input_data = np.random.rand(2, 3, 32, 32)
|
|
|
|
|
x = paddle.to_tensor(input_data)
|
|
|
|
|
# x.shape is [2, 3, 32, 32]
|
|
|
|
@ -1086,7 +1082,7 @@ def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
|
|
|
|
|
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
|
|
|
|
|
import paddle
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
input_data = np.random.rand(2, 3, 8, 32, 32)
|
|
|
|
|
x = paddle.to_tensor(input_data)
|
|
|
|
|
# x.shape is [2, 3, 8, 32, 32]
|
|
|
|
@ -1186,7 +1182,7 @@ def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
|
|
|
|
|
#
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
|
|
|
|
|
pool_out = F.adaptive_max_pool1d(data, output_size=16)
|
|
|
|
|
# pool_out shape: [1, 3, 16])
|
|
|
|
@ -1266,7 +1262,7 @@ def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
|
|
|
|
|
#
|
|
|
|
|
import paddle
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
input_data = np.random.rand(2, 3, 32, 32)
|
|
|
|
|
x = paddle.to_tensor(input_data)
|
|
|
|
|
# x.shape is [2, 3, 32, 32]
|
|
|
|
@ -1356,7 +1352,7 @@ def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
|
|
|
|
|
#
|
|
|
|
|
import paddle
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
input_data = np.random.rand(2, 3, 8, 32, 32)
|
|
|
|
|
x = paddle.to_tensor(input_data)
|
|
|
|
|
# x.shape is [2, 3, 8, 32, 32]
|
|
|
|
|