Memory optimization on Dynamic RNN (#7599)
* limit variable type to lod tensor in memory optimization transpiler * refine policy * support while operator * fix random seed and training data order * refine get_cfgs method to support multi while operators * refine codesfix-profile-doc-typo
parent
f6a4c3ea77
commit
d76fcb6fad
@ -0,0 +1,144 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.fluid as fluid
|
||||
import paddle.v2.fluid.core as core
|
||||
import paddle.v2.fluid.framework as framework
|
||||
import paddle.v2.fluid.layers as layers
|
||||
from paddle.v2.fluid.executor import Executor
|
||||
|
||||
dict_size = 30000
|
||||
source_dict_dim = target_dict_dim = dict_size
|
||||
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
|
||||
hidden_dim = 32
|
||||
word_dim = 16
|
||||
IS_SPARSE = True
|
||||
batch_size = 10
|
||||
max_length = 50
|
||||
topk_size = 50
|
||||
trg_dic_size = 10000
|
||||
|
||||
decoder_size = hidden_dim
|
||||
|
||||
# need to fix random seed and training data to compare the loss
|
||||
# value accurately calculated by the default and the memory optimization
|
||||
# version.
|
||||
fluid.default_startup_program().random_seed = 111
|
||||
|
||||
|
||||
def encoder_decoder():
|
||||
# encoder
|
||||
src_word_id = layers.data(
|
||||
name="src_word_id", shape=[1], dtype='int64', lod_level=1)
|
||||
src_embedding = layers.embedding(
|
||||
input=src_word_id,
|
||||
size=[dict_size, word_dim],
|
||||
dtype='float32',
|
||||
is_sparse=IS_SPARSE,
|
||||
param_attr=fluid.ParamAttr(name='vemb'))
|
||||
|
||||
fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
|
||||
lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4)
|
||||
encoder_out = layers.sequence_last_step(input=lstm_hidden0)
|
||||
|
||||
# decoder
|
||||
trg_language_word = layers.data(
|
||||
name="target_language_word", shape=[1], dtype='int64', lod_level=1)
|
||||
trg_embedding = layers.embedding(
|
||||
input=trg_language_word,
|
||||
size=[dict_size, word_dim],
|
||||
dtype='float32',
|
||||
is_sparse=IS_SPARSE,
|
||||
param_attr=fluid.ParamAttr(name='vemb'))
|
||||
|
||||
rnn = fluid.layers.DynamicRNN()
|
||||
with rnn.block():
|
||||
current_word = rnn.step_input(trg_embedding)
|
||||
mem = rnn.memory(init=encoder_out)
|
||||
fc1 = fluid.layers.fc(input=[current_word, mem],
|
||||
size=decoder_size,
|
||||
act='tanh')
|
||||
out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax')
|
||||
rnn.update_memory(mem, fc1)
|
||||
rnn.output(out)
|
||||
|
||||
return rnn()
|
||||
|
||||
|
||||
def to_lodtensor(data, place):
|
||||
seq_lens = [len(seq) for seq in data]
|
||||
cur_len = 0
|
||||
lod = [cur_len]
|
||||
for l in seq_lens:
|
||||
cur_len += l
|
||||
lod.append(cur_len)
|
||||
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
||||
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
||||
res = core.LoDTensor()
|
||||
res.set(flattened_data, place)
|
||||
res.set_lod([lod])
|
||||
return res
|
||||
|
||||
|
||||
def main():
|
||||
rnn_out = encoder_decoder()
|
||||
label = layers.data(
|
||||
name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
|
||||
cost = layers.cross_entropy(input=rnn_out, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
|
||||
optimizer.minimize(avg_cost)
|
||||
|
||||
fluid.memory_optimize(fluid.default_main_program())
|
||||
|
||||
# fix the order of training data
|
||||
train_data = paddle.batch(
|
||||
paddle.dataset.wmt14.train(dict_size), batch_size=batch_size)
|
||||
|
||||
# train_data = paddle.batch(
|
||||
# paddle.reader.shuffle(
|
||||
# paddle.dataset.wmt14.train(dict_size), buf_size=1000),
|
||||
# batch_size=batch_size)
|
||||
|
||||
place = core.CPUPlace()
|
||||
exe = Executor(place)
|
||||
|
||||
exe.run(framework.default_startup_program())
|
||||
|
||||
batch_id = 0
|
||||
for pass_id in xrange(10):
|
||||
for data in train_data():
|
||||
word_data = to_lodtensor(map(lambda x: x[0], data), place)
|
||||
trg_word = to_lodtensor(map(lambda x: x[1], data), place)
|
||||
trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
|
||||
outs = exe.run(fluid.default_main_program(),
|
||||
feed={
|
||||
'src_word_id': word_data,
|
||||
'target_language_word': trg_word,
|
||||
'target_language_next_word': trg_word_next
|
||||
},
|
||||
fetch_list=[avg_cost])
|
||||
avg_cost_val = np.array(outs[0])
|
||||
print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
|
||||
" avg_cost=" + str(avg_cost_val))
|
||||
if batch_id > 2:
|
||||
exit(0)
|
||||
batch_id += 1
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in new issue