fix bug sequececonv_eltadd_relu_fuse_pass (#27404)
* fix bug sequececonv_eltadd_relu_fuse_pass, output error when sequence_conv's padding_start > 0 * fix seqconv_eltadd_relu_fuse_pass unitest errorrevert-27520-disable_pr
parent
37f7414fd8
commit
d93661942e
@ -0,0 +1,140 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from inference_pass_test import InferencePassTest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.core import AnalysisConfig
|
||||
from paddle.fluid.core import PassVersionChecker
|
||||
|
||||
|
||||
class SeqconvEltaddReluFusePassTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(name="data", shape=[100, 100], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Xavier(uniform=False),
|
||||
learning_rate=0.001)
|
||||
conv_out = fluid.layers.sequence_conv(
|
||||
input=data,
|
||||
num_filters=16,
|
||||
filter_size=4,
|
||||
padding_start=0,
|
||||
act="relu",
|
||||
bias_attr=param_attr)
|
||||
|
||||
np_data = np.random.random((80, 100)).astype('float32')
|
||||
x_lod_tensor = fluid.create_lod_tensor(np_data, [[10, 20, 30, 20]],
|
||||
fluid.CPUPlace())
|
||||
self.feeds = {"data": x_lod_tensor}
|
||||
self.fetch_list = [conv_out]
|
||||
self.enable_mkldnn = True
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('seqconv_eltadd_relu_fuse_pass'))
|
||||
|
||||
|
||||
class SeqconvEltaddReluFusePassTestPaddingStartPositive(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(name="data", shape=[-1, 4], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Xavier(uniform=False),
|
||||
learning_rate=0.001)
|
||||
conv_out = fluid.layers.sequence_conv(
|
||||
input=data,
|
||||
num_filters=16,
|
||||
filter_size=3,
|
||||
padding_start=2,
|
||||
act="relu",
|
||||
bias_attr=param_attr)
|
||||
|
||||
np_data = np.array([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3],
|
||||
[4, 4, 4, 4], [5, 5, 5, 5], [6, 6, 6, 6],
|
||||
[7, 7, 7, 7]]).astype('float32')
|
||||
x_lod_tensor = fluid.create_lod_tensor(np_data, [[5, 2]],
|
||||
fluid.CPUPlace())
|
||||
self.feeds = {"data": x_lod_tensor}
|
||||
self.fetch_list = [conv_out]
|
||||
self.enable_mkldnn = True
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('seqconv_eltadd_relu_fuse_pass'))
|
||||
|
||||
|
||||
class SeqconvEltaddReluFusePassTestPaddingStartNegative(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(name="data", shape=[100, 100], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Xavier(uniform=False),
|
||||
learning_rate=0.001)
|
||||
conv_out = fluid.layers.sequence_conv(
|
||||
input=data,
|
||||
num_filters=16,
|
||||
filter_size=4,
|
||||
padding_start=-1,
|
||||
act="relu",
|
||||
bias_attr=param_attr)
|
||||
|
||||
np_data = np.random.random((80, 100)).astype('float32')
|
||||
x_lod_tensor = fluid.create_lod_tensor(np_data, [[10, 20, 30, 20]],
|
||||
fluid.CPUPlace())
|
||||
self.feeds = {"data": x_lod_tensor}
|
||||
self.fetch_list = [conv_out]
|
||||
self.enable_mkldnn = True
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('seqconv_eltadd_relu_fuse_pass'))
|
||||
|
||||
|
||||
class SeqconvEltaddReluFusePassTestPaddingStartNone(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(name="data", shape=[100, 100], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Xavier(uniform=False),
|
||||
learning_rate=0.001)
|
||||
conv_out = fluid.layers.sequence_conv(
|
||||
input=data,
|
||||
num_filters=16,
|
||||
filter_size=4,
|
||||
act="relu",
|
||||
bias_attr=param_attr)
|
||||
|
||||
np_data = np.random.random((80, 100)).astype('float32')
|
||||
x_lod_tensor = fluid.create_lod_tensor(np_data, [[10, 20, 30, 20]],
|
||||
fluid.CPUPlace())
|
||||
self.feeds = {"data": x_lod_tensor}
|
||||
self.fetch_list = [conv_out]
|
||||
self.enable_mkldnn = True
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible('seqconv_eltadd_relu_fuse_pass'))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue