|
|
|
@ -2,6 +2,7 @@ import paddle.v2 as paddle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
paddle.init(use_gpu=False, trainer_count=3)
|
|
|
|
|
movie_title_dict = paddle.dataset.movielens.get_movie_title_dict()
|
|
|
|
|
uid = paddle.layer.data(
|
|
|
|
|
name='user_id',
|
|
|
|
@ -17,10 +18,17 @@ def main():
|
|
|
|
|
name='age_id',
|
|
|
|
|
type=paddle.data_type.integer_value(
|
|
|
|
|
len(paddle.dataset.movielens.age_table)))
|
|
|
|
|
usr_age_emb = paddle.embedding(input=usr_age_id, size=16)
|
|
|
|
|
usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16)
|
|
|
|
|
|
|
|
|
|
usr_combined_features = paddle.fc(
|
|
|
|
|
input=[usr_emb, usr_gender_emb, usr_age_emb],
|
|
|
|
|
usr_job_id = paddle.layer.data(
|
|
|
|
|
name='job_id',
|
|
|
|
|
type=paddle.data_type.integer_value(paddle.dataset.movielens.max_job_id(
|
|
|
|
|
) + 1))
|
|
|
|
|
|
|
|
|
|
usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16)
|
|
|
|
|
|
|
|
|
|
usr_combined_features = paddle.layer.fc(
|
|
|
|
|
input=[usr_emb, usr_gender_emb, usr_age_emb, usr_job_emb],
|
|
|
|
|
size=200,
|
|
|
|
|
act=paddle.activation.Tanh())
|
|
|
|
|
|
|
|
|
@ -30,12 +38,59 @@ def main():
|
|
|
|
|
paddle.dataset.movielens.max_movie_id() + 1))
|
|
|
|
|
mov_emb = paddle.layer.embedding(input=mov_id, size=32)
|
|
|
|
|
|
|
|
|
|
mov_categories = paddle.layer.data(
|
|
|
|
|
name='category_id',
|
|
|
|
|
type=paddle.data_type.sparse_binary_vector(
|
|
|
|
|
len(paddle.dataset.movielens.movie_categories())))
|
|
|
|
|
|
|
|
|
|
mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32)
|
|
|
|
|
|
|
|
|
|
mov_title_id = paddle.layer.data(
|
|
|
|
|
name='movie_title',
|
|
|
|
|
type=paddle.data_type.integer_value(len(movie_title_dict)))
|
|
|
|
|
mov_title_emb = paddle.embedding(input=mov_title_id, size=32)
|
|
|
|
|
with paddle.layer.mixed() as mixed:
|
|
|
|
|
pass
|
|
|
|
|
type=paddle.data_type.integer_value_sequence(len(movie_title_dict)))
|
|
|
|
|
mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32)
|
|
|
|
|
mov_title_conv = paddle.networks.sequence_conv_pool(
|
|
|
|
|
input=mov_title_emb, hidden_size=32, context_len=3)
|
|
|
|
|
|
|
|
|
|
mov_combined_features = paddle.layer.fc(
|
|
|
|
|
input=[mov_emb, mov_categories_hidden, mov_title_conv],
|
|
|
|
|
size=200,
|
|
|
|
|
act=paddle.activation.Tanh())
|
|
|
|
|
|
|
|
|
|
inference = paddle.layer.cos_sim(
|
|
|
|
|
a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
|
|
|
|
|
cost = paddle.layer.regression_cost(
|
|
|
|
|
input=inference,
|
|
|
|
|
label=paddle.layer.data(
|
|
|
|
|
name='score', type=paddle.data_type.dense_vector(1)))
|
|
|
|
|
|
|
|
|
|
parameters = paddle.parameters.create(cost)
|
|
|
|
|
|
|
|
|
|
trainer = paddle.trainer.SGD(cost=cost,
|
|
|
|
|
parameters=parameters,
|
|
|
|
|
update_equation=paddle.optimizer.Adam(
|
|
|
|
|
learning_rate=1e-4))
|
|
|
|
|
|
|
|
|
|
def event_handler(event):
|
|
|
|
|
if isinstance(event, paddle.event.EndIteration):
|
|
|
|
|
if event.batch_id % 100 == 0:
|
|
|
|
|
print "Pass %d Batch %d Cost %.2f" % (
|
|
|
|
|
event.pass_id, event.batch_id, event.cost)
|
|
|
|
|
|
|
|
|
|
trainer.train(
|
|
|
|
|
reader=paddle.reader.batched(
|
|
|
|
|
paddle.dataset.movielens.train(), batch_size=256),
|
|
|
|
|
event_handler=event_handler,
|
|
|
|
|
reader_dict={
|
|
|
|
|
'user_id': 0,
|
|
|
|
|
'gender_id': 1,
|
|
|
|
|
'age_id': 2,
|
|
|
|
|
'job_id': 3,
|
|
|
|
|
'movie_id': 4,
|
|
|
|
|
'category_id': 5,
|
|
|
|
|
'movie_title': 6,
|
|
|
|
|
'score': 7
|
|
|
|
|
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|