Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_CudnnHolder_bug

fix-develop-build.sh
fengjiayi 7 years ago
commit db5e3dd767

@ -53,7 +53,7 @@ RUN curl -s -q https://glide.sh/get | sh
# and its size is only one-third of the official one.
# 2. Manually add ~IPluginFactory() in IPluginFactory class of NvInfer.h, otherwise, it couldn't work in paddle.
# See https://github.com/PaddlePaddle/Paddle/issues/10129 for details.
RUN wget -qO- http://paddlepaddledeps.bj.bcebos.com/TensorRT-4.0.0.3.Ubuntu-16.04.4.x86_64-gnu.cuda-8.0.cudnn7.0.tar.gz | \
RUN wget -qO- http://paddlepaddledeps.cdn.bcebos.com/TensorRT-4.0.0.3.Ubuntu-16.04.4.x86_64-gnu.cuda-8.0.cudnn7.0.tar.gz | \
tar -xz -C /usr/local && \
cp -rf /usr/local/TensorRT/include /usr && \
cp -rf /usr/local/TensorRT/lib /usr

@ -128,16 +128,13 @@ set(src_dir "${PADDLE_SOURCE_DIR}/paddle/fluid")
set(dst_dir "${FLUID_INSTALL_DIR}/paddle/fluid")
set(module "framework")
if (NOT WIN32)
copy(framework_lib DEPS framework_py_proto
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/details/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/framework/framework.pb.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/details ${dst_dir}/${module}
)
else()
copy(framework_lib
set(framework_lib_deps framework_py_proto)
endif(NOT WIN32)
copy(framework_lib DEPS ${framework_lib_deps}
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/details/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/framework/framework.pb.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/details ${dst_dir}/${module}
${src_dir}/${module}/ir/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/details ${dst_dir}/${module} ${dst_dir}/${module}/ir
)
endif(NOT WIN32)
set(module "memory")
copy(memory_lib
@ -161,7 +158,8 @@ set(module "inference")
copy(inference_lib DEPS ${inference_deps}
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/fluid/inference/libpaddle_fluid.*
${src_dir}/${module}/api/paddle_inference_api.h ${src_dir}/${module}/api/demo_ci
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/paddle_inference_pass.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module} ${dst_dir}/${module}
)
set(module "platform")

@ -60,6 +60,7 @@
图3. 编码器-解码器框架
</div>
<a name="编码器"></a>
#### 编码器
编码阶段分为三步:
@ -81,7 +82,7 @@
机器翻译任务的训练过程中,解码阶段的目标是最大化下一个正确的目标语言词的概率。思路是:
1. 每一个时刻根据源语言句子的编码信息又叫上下文向量context vector`$c$`、真实目标语言序列的第`$i$`个词`$u_i$`和`$i$`时刻RNN的隐层状态`$z_i$`,计算出下一个隐层状态`$z_{i+1}$`。计算公式如下:
$$z_{i+1}=\phi_{\theta '} \left ( c,u_i,z_i \right )$$
其中`$\phi _{\theta '}$`是一个非线性激活函数;`$c=q\mathbf{h}$`是源语言句子的上下文向量,在不使用[注意力机制](#注意力机制)时,如果[编码器](#编码器)的输出是源语言句子编码后的最后一个元素,则可以定义`$c=h_T$``$u_i$`是目标语言序列的第`$i$`个单词,`$u_0$`是目标语言序列的开始标记`<s>`,表示解码开始;`$z_i$`是`$i$`时刻解码RNN的隐层状态`$z_0$`是一个全零的向量。
其中`$\phi _{\theta '}$`是一个非线性激活函数;`$c=q\mathbf{h}$`是源语言句子的上下文向量,在不使用注意力机制时,如果[编码器](#编码器)的输出是源语言句子编码后的最后一个元素,则可以定义`$c=h_T$``$u_i$`是目标语言序列的第`$i$`个单词,`$u_0$`是目标语言序列的开始标记`<s>`,表示解码开始;`$z_i$`是`$i$`时刻解码RNN的隐层状态`$z_0$`是一个全零的向量。
2. 将`$z_{i+1}$`通过`softmax`归一化,得到目标语言序列的第`$i+1$`个单词的概率分布`$p_{i+1}$`。概率分布公式如下:
$$p\left ( u_{i+1}|u_{&lt;i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
@ -93,6 +94,7 @@ $$p\left ( u_{i+1}|u_{&lt;i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
机器翻译任务的生成过程,通俗来讲就是根据预先训练的模型来翻译源语言句子。生成过程中的解码阶段和上述训练过程的有所差异,具体介绍请见[柱搜索算法](#柱搜索算法)。
<a name="柱搜索算法"></a>
### 柱搜索算法
柱搜索([beam search](http://en.wikipedia.org/wiki/Beam_search))是一种启发式图搜索算法,用于在图或树中搜索有限集合中的最优扩展节点,通常用在解空间非常大的系统(如机器翻译、语音识别)中,原因是内存无法装下图或树中所有展开的解。如在机器翻译任务中希望翻译“`<s>你好<e>`”就算目标语言字典中只有3个词`<s>`, `<e>`, `hello`),也可能生成无限句话(`hello`循环出现的次数不定),为了找到其中较好的翻译结果,我们可采用柱搜索算法。

@ -149,6 +149,8 @@ def convolution_net(data, input_dim, class_dim, emb_dim, hid_dim):
网络的输入`input_dim`表示的是词典的大小,`class_dim`表示类别数。这里,我们使用[`sequence_conv_pool`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/trainer_config_helpers/networks.py) API实现了卷积和池化操作。
<a name="栈值双向LSTM"></a>
### 栈式双向LSTM
栈式双向神经网络`stacked_lstm_net`的代码片段如下:

@ -50,7 +50,7 @@ similarity: -0.0997506977351
```
以上结果可以通过运行`calculate_dis.py`, 加载字典里的单词和对应训练特征结果得到,我们将在[应用模型](#应用模型)中详细描述用法。
以上结果可以通过运行`calculate_dis.py`, 加载字典里的单词和对应训练特征结果得到,我们将在[模型应用](#模型应用)中详细描述用法。
## 模型概览
@ -189,6 +189,7 @@ dream that one day <e>
最后每个输入会按其单词次在字典里的位置转化成整数的索引序列作为PaddlePaddle的输入。
<a name="训练模型"></a>
## 编程实现
本配置的模型结构如下图所示:
@ -349,6 +350,7 @@ Step 20: Average Cost 5.766995
...
```
<a name="模型应用"></a>
## 模型应用
在模型训练后,我们可以用它做一些预测。

@ -102,7 +102,7 @@ Softmax回归模型采用了最简单的两层神经网络即只有输入层
池化是非线性下采样的一种形式主要作用是通过减少网络的参数来减小计算量并且能够在一定程度上控制过拟合。通常在卷积层的后面会加上一个池化层。池化包括最大池化、平均池化等。其中最大池化是用不重叠的矩形框将输入层分成不同的区域对于每个矩形框的数取最大值作为输出层如图6所示。
更详细的关于卷积神经网络的具体知识可以参考[斯坦福大学公开课]( http://cs231n.github.io/convolutional-networks/ )和[图像分类](https://github.com/PaddlePaddle/book/blob/develop/image_classification/README.md)教程。
更详细的关于卷积神经网络的具体知识可以参考[斯坦福大学公开课]( http://cs231n.github.io/convolutional-networks/ )和[图像分类]( https://github.com/PaddlePaddle/book/tree/develop/03.image_classification )教程。
### 常见激活函数介绍
- sigmoid激活函数 $ f(x) = sigmoid(x) = \frac{1}{1+e^{-x}} $

@ -149,7 +149,7 @@ python setup.py bdist_wheel
pip install --upgrade dist/visualdl-*.whl
```
如果打包和安装遇到其他问题不安装只想运行Visual DL可以看[这里](https://github.com/PaddlePaddle/VisualDL/blob/develop/docs/how_to_dev_frontend_en.md)
如果打包和安装遇到其他问题不安装只想运行Visual DL可以看[这里](https://github.com/PaddlePaddle/VisualDL/blob/develop/docs/develop/how_to_dev_frontend_cn.md)
## SDK

@ -1,20 +1,35 @@
set(pass_file ${PADDLE_BINARY_DIR}/paddle/fluid/inference/api/paddle_inference_pass.h)
file(WRITE ${pass_file} "// Generated by the paddle/fluid/framework/ir/CMakeLists.txt. DO NOT EDIT!\n\n")
file(APPEND ${pass_file} "\#include \"paddle/fluid/framework/ir/pass.h\"\n")
function(pass_library TARGET)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(op_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cc_library(${TARGET} SRCS ${TARGET}.cc DEPS graph_pattern_detector pass)
file(APPEND ${pass_file} "USE_PASS(${TARGET});\n")
set(PASS_LIBRARY ${TARGET} ${PASS_LIBRARY} PARENT_SCOPE)
endfunction()
cc_library(node SRCS node.cc DEPS proto_desc)
cc_library(graph SRCS graph.cc DEPS node)
cc_library(graph_helper SRCS graph_helper.cc DEPS graph)
cc_library(pass SRCS pass.cc DEPS graph node graph_helper)
cc_library(graph_viz_pass SRCS graph_viz_pass.cc DEPS graph pass graph_helper)
cc_library(graph_to_program_pass SRCS graph_to_program_pass.cc DEPS graph pass graph_helper)
cc_library(graph_traits SRCS graph_traits.cc DEPS graph)
cc_library(graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph graph_helper graph_traits)
cc_library(fc_fuse_pass SRCS fc_fuse_pass.cc DEPS graph graph_pattern_detector)
cc_library(attention_lstm_fuse_pass SRCS attention_lstm_fuse_pass.cc DEPS graph graph_pattern_detector)
cc_library(infer_clean_graph_pass SRCS infer_clean_graph_pass.cc DEPS graph pass)
cc_library(fc_lstm_fuse_pass SRCS fc_lstm_fuse_pass.cc DEPS graph graph_pattern_detector)
cc_library(seq_concat_fc_fuse_pass SRCS seq_concat_fc_fuse_pass.cc DEPS graph graph_pattern_detector)
pass_library(graph_to_program_pass)
pass_library(graph_viz_pass)
pass_library(fc_fuse_pass)
pass_library(attention_lstm_fuse_pass)
pass_library(infer_clean_graph_pass)
pass_library(fc_lstm_fuse_pass)
pass_library(seq_concat_fc_fuse_pass)
set(GLOB_PASS_LIB ${PASS_LIBRARY} CACHE INTERNAL "Global PASS library")
cc_test(pass_test SRCS pass_test.cc DEPS graph pass graph_helper)
cc_test(graph_test SRCS graph_test.cc DEPS graph graph_helper op_registry)
cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_registry)
cc_test(graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph_to_program_pass)
cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector)
cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass graph_pattern_detector graph pass graph_traits framework_proto)
cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto)

@ -99,17 +99,13 @@ void FindWhileOp(Graph* graph) {
auto* cell_init = graph->RetriveNode(6);
auto* hidden_init = graph->RetriveNode(8);
#define LINK_TO(node0, node1) \
node0->outputs.push_back(node1); \
node1->inputs.push_back(node0);
auto* lstm_op = graph->CreateOpNode(&op_desc);
PrepareParameters(graph, param);
LINK_TO(X, lstm_op);
LINK_TO(cell_init, lstm_op);
LINK_TO(hidden_init, lstm_op);
LINK_TO(lstm_op, LSTMOUT);
IR_NODE_LINK_TO(X, lstm_op);
IR_NODE_LINK_TO(cell_init, lstm_op);
IR_NODE_LINK_TO(hidden_init, lstm_op);
IR_NODE_LINK_TO(lstm_op, LSTMOUT);
GraphSafeRemoveNodes(graph, marked_nodes);
}

@ -21,74 +21,26 @@ namespace paddle {
namespace framework {
namespace ir {
bool VarOutLinksToOp(Node* node, const std::string& op_type) {
for (auto* out : node->outputs) {
if (out->IsOp() && out->Op()->Type() == op_type) {
return true;
}
}
return false;
}
void BuildFCPattern(PDPattern* pattern) {
// Create Operators
auto* mul_op = pattern->NewNode("mul")->assert_is_op("mul");
auto* elementwise_add_op =
pattern->NewNode("elementwise_add")->assert_is_op("elementwise_add");
// Create variables
// w
auto* mul_weight_var = pattern->NewNode("mul_weight")
->AsInput()
->assert_is_op_nth_input("mul", "Y", 0);
// x
auto* mul_tmp_var = pattern->NewNode("mul_tmp_var")
->AsInput()
->assert_is_op_nth_input("mul", "X", 0);
// intermediate variable, will be removed in the IR after fuse.
auto* mul_out_var = pattern->NewNode("mul_out")
->AsIntermediate()
->assert_is_only_output_of_op("mul")
->assert_is_op_input("elementwise_add");
// bias
auto* elementwise_add_tmp_var = pattern->NewNode("elementwise_add_tmpvar")
->assert_is_op_input("elementwise_add")
->AsInput();
// output
auto* elementwise_add_out_var = pattern->NewNode("elementwise_add_out")
->AsOutput()
->assert_is_op_output("elementwise_add");
mul_op->LinksFrom({mul_weight_var, mul_tmp_var}).LinksTo({mul_out_var});
elementwise_add_op->LinksFrom({mul_out_var, elementwise_add_tmp_var})
.LinksTo({elementwise_add_out_var});
}
// Replace the node `from` in the links to `to`
bool LinksReplace(std::vector<Node*>* links, Node* from, Node* to) {
for (auto*& n : *links) {
if (n == from) {
n = to;
return true;
}
}
return false;
}
std::unique_ptr<ir::Graph> FCFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
PADDLE_ENFORCE(graph.get());
FusePassBase::Init("fc", graph.get());
FusePassBase::Init("fc_fuse", graph.get());
std::unordered_set<Node*> nodes2delete;
GraphPatternDetector gpd;
BuildFCPattern(gpd.mutable_pattern());
#define GET_NODE(id) \
PADDLE_ENFORCE(subgraph.count(gpd.pattern().RetrieveNode(#id)), \
"pattern has no Node called %s", #id); \
auto* id = subgraph.at(gpd.pattern().RetrieveNode(#id)); \
PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", #id);
// BuildFCPattern(gpd.mutable_pattern());
auto* x = gpd.mutable_pattern()
->NewNode("fc_fuse/x")
->AsInput()
->assert_is_op_input("mul", "X");
patterns::FC(gpd.mutable_pattern(), "fc_fuse", x, true /*with bias*/);
#define GET_NODE(id) \
PADDLE_ENFORCE(subgraph.count(gpd.pattern().RetrieveNode("fc_fuse/" #id)), \
"pattern has no Node called %s", #id); \
auto* id = subgraph.at(gpd.pattern().RetrieveNode("fc_fuse/" #id)); \
PADDLE_ENFORCE_NOT_NULL(id, "subgraph has no node %s", "fc_fuse/" #id);
int found_fc_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
@ -98,43 +50,33 @@ std::unique_ptr<ir::Graph> FCFusePass::ApplyImpl(
// scenerio.
// FC's fusion is simple, just op fuse, no need to process the
// parameters.
GET_NODE(mul_tmp_var); // x
GET_NODE(mul_weight); // Y
GET_NODE(elementwise_add_tmpvar); // bias
GET_NODE(elementwise_add_out); // Out
GET_NODE(mul); // MUL op
GET_NODE(elementwise_add); // ELEMENT_ADD op
GET_NODE(mul_out); // tmp
GET_NODE(x); // x
GET_NODE(w); // Y
GET_NODE(fc_bias); // bias
GET_NODE(fc_out); // Out
GET_NODE(mul); // MUL op
GET_NODE(elementwise_add); // ELEMENT_ADD op
GET_NODE(mul_out); // tmp
#undef GET_NODE
// Create an FC Node.
OpDesc desc;
std::string fc_x_in = mul_tmp_var->Name();
std::string fc_Y_in = mul_weight->Name();
std::string fc_bias_in = elementwise_add_tmpvar->Name();
std::string fc_out = elementwise_add_out->Name();
std::string fc_x_in = x->Name();
std::string fc_Y_in = w->Name();
std::string fc_bias_in = fc_bias->Name();
std::string fc_out_out = fc_out->Name();
desc.SetInput("Input", std::vector<std::string>({fc_x_in}));
desc.SetInput("W", std::vector<std::string>({fc_Y_in}));
desc.SetInput("Bias", std::vector<std::string>({fc_bias_in}));
desc.SetOutput("Out", std::vector<std::string>({fc_out}));
desc.SetOutput("Out", std::vector<std::string>({fc_out_out}));
desc.SetType("fc");
auto fc_node = g->CreateOpNode(&desc); // OpDesc will be copied.
fc_node->inputs =
std::vector<Node*>({mul_tmp_var, mul_weight, elementwise_add_tmpvar});
fc_node->outputs.push_back(elementwise_add_out);
// Update link relatons
PADDLE_ENFORCE(LinksReplace(&mul_tmp_var->outputs, mul, fc_node));
PADDLE_ENFORCE(LinksReplace(&mul_weight->outputs, mul, fc_node));
PADDLE_ENFORCE(LinksReplace(&elementwise_add_tmpvar->outputs,
elementwise_add, fc_node));
PADDLE_ENFORCE(
LinksReplace(&elementwise_add_out->inputs, elementwise_add, fc_node));
GraphSafeRemoveNodes(graph.get(), {mul, elementwise_add, mul_out});
// Drop old nodes
graph->RemoveNode(mul);
graph->RemoveNode(elementwise_add);
graph->RemoveNode(mul_out); // tmp variable
IR_NODE_LINK_TO(x, fc_node);
IR_NODE_LINK_TO(w, fc_node);
IR_NODE_LINK_TO(fc_bias, fc_node);
IR_NODE_LINK_TO(fc_node, fc_out);
found_fc_count++;
};

@ -121,15 +121,11 @@ int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
#undef TMP_NEW
#undef TMP_NAME
#define LINK_TO(a, b) \
a->outputs.push_back(b); \
b->inputs.push_back(a);
LINK_TO(input_n, op);
LINK_TO(weight_x_n, op);
LINK_TO(weight_h_n, op);
LINK_TO(bias_n, op);
LINK_TO(op, hidden_n);
#undef LINK_TO
IR_NODE_LINK_TO(input_n, op);
IR_NODE_LINK_TO(weight_x_n, op);
IR_NODE_LINK_TO(weight_h_n, op);
IR_NODE_LINK_TO(bias_n, op);
IR_NODE_LINK_TO(op, hidden_n);
return op;
};

@ -111,6 +111,11 @@ bool GraphPatternDetector::MarkPDNodesInGraph(const ir::Graph& graph) {
return false;
}
}
for (auto& item : pdnodes2nodes_) {
for (auto& n : item.second) {
GetMarkedNodes(const_cast<Graph*>(&graph)).insert(n);
}
}
VLOG(3) << pdnodes2nodes_.size() << " nodes marked";
return !pdnodes2nodes_.empty();
@ -278,7 +283,7 @@ void GraphPatternDetector::RemoveOverlappedMatch(
for (const auto& subgraph : *subgraphs) {
bool valid = true;
for (auto& item : subgraph) {
if (node_set.count(item.second)) {
if (item.first->IsIntermediate() && node_set.count(item.second)) {
valid = false;
break;
}
@ -334,22 +339,22 @@ PDNode& PDNode::LinksFrom(const std::vector<PDNode*>& others) {
}
PDNode* PDNode::assert_is_op() {
asserts_.emplace_back([this](Node* x) { return x && x->IsOp(); });
asserts_.emplace_back([](Node* x) { return x && x->IsOp(); });
return this;
}
PDNode* PDNode::assert_is_op(const std::string& op_type) {
asserts_.emplace_back([this, op_type](Node* x) {
asserts_.emplace_back([op_type](Node* x) {
return x && x->IsOp() && x->Op()->Type() == op_type;
});
return this;
}
PDNode* PDNode::assert_is_var() {
asserts_.emplace_back([this](Node* x) { return x && x->IsVar(); });
asserts_.emplace_back([](Node* x) { return x && x->IsVar(); });
return this;
}
PDNode* PDNode::assert_var_not_persistable() {
assert_is_var();
asserts_.emplace_back([this](Node* x) { return !x->Var()->Persistable(); });
asserts_.emplace_back([](Node* x) { return !x->Var()->Persistable(); });
return this;
}
PDNode* PDNode::assert_is_persistable_var() {
@ -491,14 +496,16 @@ void GraphSafeRemoveNodes(Graph* graph,
for (auto it = node->inputs.begin(); it != node->inputs.end();) {
if (nodes.count(*it)) {
it = const_cast<Node*>(node)->inputs.erase(it);
} else
} else {
it++;
}
}
for (auto it = node->outputs.begin(); it != node->outputs.end();) {
if (nodes.count(*it)) {
it = const_cast<Node*>(node)->outputs.erase(it);
} else
} else {
it++;
}
}
}
}

@ -245,6 +245,8 @@ class GraphPatternDetector {
void UniquePatterns(std::vector<subgraph_t>* subgraphs);
// Remove overlapped match subgraphs, when overlapped, keep the previous one.
// The intermediate PDNodes will be removed, so can't shared by multiple
// patterns.
void RemoveOverlappedMatch(std::vector<subgraph_t>* subgraphs);
// Validate whether the intermediate nodes are linked by external nodes.
@ -295,6 +297,10 @@ PDNode* LSTM(PDPattern* pattern, const std::string& name_scope, PDNode* x);
} // namespace patterns
#define IR_NODE_LINK_TO(a, b) \
a->outputs.push_back(b); \
b->inputs.push_back(a);
} // namespace ir
} // namespace framework
} // namespace paddle

@ -140,8 +140,9 @@ TEST(GraphPatternDetecter, MultiSubgraph) {
return node->IsOp() && (node->Name() == "op2" || node->Name() == "op3");
},
"OP0");
auto* any_var = x.mutable_pattern()->NewNode(
[](Node* node) { return node->IsVar(); }, "VAR");
auto* any_var = x.mutable_pattern()
->NewNode([](Node* node) { return node->IsVar(); }, "VAR")
->AsIntermediate();
auto* any_op1 = x.mutable_pattern()->NewNode(
[](Node* node) { return node->IsOp(); }, "OP1");

@ -13,42 +13,41 @@
// limitations under the License.
#include <algorithm>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {
namespace framework {
namespace ir {
class InferCleanGraphPass : public Pass {
class InferCleanGraphPass : public FusePassBase {
public:
virtual ~InferCleanGraphPass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const {
FusePassBase::Init("original_graph", graph.get());
PADDLE_ENFORCE(graph.get());
auto is_valid_node = [](Node* x) {
return x && IsControlDepVar(*x) && x->IsVar() && !x->Var();
};
std::unordered_set<Node*> invalid_nodes;
std::unordered_set<const Node*> invalid_nodes;
int valid_op = 0;
for (auto* node : graph->Nodes()) {
if (is_valid_node(node)) {
invalid_nodes.insert(node);
} else if (node->IsOp()) {
// Collect all the operators to help tracking number of operators.
++valid_op;
}
}
// remove nodes from the graph.
for (auto* node : invalid_nodes) {
graph->RemoveNode(node);
}
GraphSafeRemoveNodes(graph.get(), invalid_nodes);
// clean edges.
for (auto* node : graph->Nodes()) {
CleanEdges(&node->inputs, invalid_nodes);
CleanEdges(&node->outputs, invalid_nodes);
}
AddStatis(valid_op);
return graph;
}

@ -219,16 +219,13 @@ std::unique_ptr<ir::Graph> SeqConcatFcFusePass::ApplyImpl(
op_desc.SetAttr("fc_activation", act->Op()->Type());
auto* op_node = graph->CreateOpNode(&op_desc);
// Add links
#define NODE_LINKS(a, b) \
a->outputs.push_back(b); \
b->inputs.push_back(a);
NODE_LINKS(fc_w, op_node);
NODE_LINKS(fc_bias, op_node);
NODE_LINKS(concat_in0, op_node);
NODE_LINKS(sequence_expand0_in, op_node);
NODE_LINKS(sequence_expand1_in, op_node);
NODE_LINKS(op_node, fc_out);
// Add links
IR_NODE_LINK_TO(fc_w, op_node);
IR_NODE_LINK_TO(fc_bias, op_node);
IR_NODE_LINK_TO(concat_in0, op_node);
IR_NODE_LINK_TO(sequence_expand0_in, op_node);
IR_NODE_LINK_TO(sequence_expand1_in, op_node);
IR_NODE_LINK_TO(op_node, fc_out);
// Clean nodes.
std::unordered_set<const Node*> marked_nodes;
@ -241,7 +238,6 @@ std::unique_ptr<ir::Graph> SeqConcatFcFusePass::ApplyImpl(
marked_nodes.erase(sequence_expand0_in);
marked_nodes.erase(sequence_expand1_in);
marked_nodes.erase(fc_out);
GraphSafeRemoveNodes(graph, marked_nodes);
});

@ -10,7 +10,7 @@ set(FLUID_CORE_MODULES proto_desc memory lod_tensor executor)
# TODO(panyx0718): Should this be called paddle_fluid_inference_api_internal?
cc_library(paddle_fluid_api
SRCS io.cc
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB} graph_to_program_pass)
DEPS ${FLUID_CORE_MODULES} ${GLOB_OP_LIB})
get_property(fluid_modules GLOBAL PROPERTY FLUID_MODULES)
@ -22,7 +22,7 @@ cc_library(paddle_fluid_origin DEPS ${fluid_modules} paddle_fluid_api)
#endif()
# Create static library
cc_library(paddle_fluid DEPS ${fluid_modules} paddle_fluid_api paddle_inference_api)
cc_library(paddle_fluid DEPS ${fluid_modules} paddle_fluid_api paddle_inference_api analysis_predictor)
if(NOT APPLE)
# TODO(liuyiqu: Temporarily disable the link flag because it is not support on Mac.
set(LINK_FLAGS "-Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/paddle_fluid.sym")
@ -32,6 +32,7 @@ endif()
# Create shared library
cc_library(paddle_fluid_shared SHARED
SRCS io.cc ${CMAKE_CURRENT_SOURCE_DIR}/api/api.cc ${CMAKE_CURRENT_SOURCE_DIR}/api/api_impl.cc
${CMAKE_CURRENT_SOURCE_DIR}/api/analysis_predictor.cc
DEPS ${fluid_modules} paddle_fluid_api)
set_target_properties(paddle_fluid_shared PROPERTIES OUTPUT_NAME paddle_fluid)

@ -33,7 +33,7 @@ function (inference_analysis_test TARGET)
endif()
cc_test(${TARGET}
SRCS "${analysis_test_SRCS}"
DEPS analysis graph fc_fuse_pass graph_viz_pass infer_clean_graph_pass graph_pattern_detector pass ${analysis_test_EXTRA_DEPS}
DEPS analysis pass ${GLOB_PASS_LIB} ${analysis_test_EXTRA_DEPS}
ARGS --inference_model_dir=${PYTHON_TESTS_DIR}/book/word2vec.inference.model ${mem_opt} ${analysis_test_ARGS})
set_tests_properties(${TARGET} PROPERTIES DEPENDS test_word2vec)
endif(WITH_TESTING)
@ -56,25 +56,13 @@ if (NOT EXISTS ${DITU_INSTALL_DIR} AND WITH_TESTING)
endif()
inference_analysis_test(test_analyzer SRCS analyzer_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis
analysis_predictor
# ir
fc_fuse_pass
fc_lstm_fuse_pass
seq_concat_fc_fuse_pass
graph_viz_pass
infer_clean_graph_pass
graph_pattern_detector
infer_clean_graph_pass
attention_lstm_fuse_pass
paddle_inference_api
pass
EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor
ARGS --infer_ditu_rnn_model=${DITU_INSTALL_DIR}/model
--infer_ditu_rnn_data=${DITU_INSTALL_DIR}/data.txt)
inference_analysis_test(test_data_flow_graph SRCS data_flow_graph_tester.cc)
inference_analysis_test(test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_to_fluid_pass_tester.cc EXTRA_DEPS paddle_inference_api)
inference_analysis_test(test_fluid_to_ir_pass SRCS fluid_to_ir_pass_tester.cc EXTRA_DEPS paddle_fluid)
inference_analysis_test(test_data_flow_graph_to_fluid_pass SRCS data_flow_graph_to_fluid_pass_tester.cc)
inference_analysis_test(test_fluid_to_ir_pass SRCS fluid_to_ir_pass_tester.cc)
inference_analysis_test(test_fluid_to_data_flow_graph_pass SRCS fluid_to_data_flow_graph_pass_tester.cc)
inference_analysis_test(test_subgraph_splitter SRCS subgraph_splitter_tester.cc)
inference_analysis_test(test_dfg_graphviz_draw_pass SRCS dfg_graphviz_draw_pass_tester.cc)

@ -22,6 +22,7 @@
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/profiler.h"
@ -327,9 +328,20 @@ void TestDituRNNPrediction(const std::string &model_path,
LOG(INFO) << "fused " << item.first << " " << item.second;
}
ASSERT_TRUE(fuse_statis.count("fc"));
EXPECT_EQ(fuse_statis.at("fc"), 1);
EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 1);
int num_ops = 0;
for (auto &node :
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
if (node->IsFunction()) {
++num_ops;
}
}
LOG(INFO) << "has num ops: " << num_ops;
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
EXPECT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM
EXPECT_EQ(num_ops,
13); // After graph optimization, only 13 operators exists.
}
}
@ -357,10 +369,3 @@ TEST(Analyzer, DituRNN_with_analysis_with_IR) {
} // namespace analysis
} // namespace inference
} // namespace paddle
USE_PASS(fc_fuse_pass);
USE_PASS(seq_concat_fc_fuse_pass);
USE_PASS(fc_lstm_fuse_pass);
USE_PASS(graph_viz_pass);
USE_PASS(infer_clean_graph_pass);
USE_PASS(attention_lstm_fuse_pass);

@ -16,6 +16,7 @@
#include <gtest/gtest.h>
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
namespace paddle {
namespace inference {
@ -33,10 +34,3 @@ TEST(FluidToIrPass, Test) {
} // namespace analysis
} // namespace inference
} // namespace paddle
USE_PASS(graph_viz_pass);
USE_PASS(infer_clean_graph_pass);
USE_PASS(attention_lstm_fuse_pass);
USE_PASS(fc_lstm_fuse_pass);
USE_PASS(seq_concat_fc_fuse_pass);
USE_PASS(fc_fuse_pass);

@ -18,10 +18,7 @@ if(APPLE)
endif(APPLE)
set(inference_deps paddle_inference_api paddle_fluid_api analysis pass ir_pass_manager
graph_viz_pass fc_fuse_pass
infer_clean_graph_pass
)
set(inference_deps paddle_inference_api paddle_fluid_api analysis pass ir_pass_manager ${GLOB_PASS_LIB})
if(WITH_GPU AND TENSORRT_FOUND)
set(inference_deps ${inference_deps} paddle_inference_tensorrt_subgraph_engine)

@ -18,6 +18,7 @@
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace paddle {
@ -133,7 +134,3 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
}
} // namespace paddle
USE_PASS(fc_fuse_pass);
USE_PASS(graph_viz_pass);
USE_PASS(infer_clean_graph_pass);

@ -16,6 +16,7 @@
#include <sys/time.h>
#include <algorithm>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>

@ -1,6 +1,7 @@
{
global:
*paddle*;
*Pass*;
local:
*;
};

@ -0,0 +1,66 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
namespace operators {
/*
* transform that computes target bounding-box regression deltas
* given proposal boxes and ground-truth boxes.
*/
template <typename T>
inline void BoxToDelta(const int box_num, const framework::Tensor& ex_boxes,
const framework::Tensor& gt_boxes, const T* weights,
const bool normalized, framework::Tensor* box_delta) {
auto ex_boxes_et = framework::EigenTensor<T, 2>::From(ex_boxes);
auto gt_boxes_et = framework::EigenTensor<T, 2>::From(gt_boxes);
auto trg = framework::EigenTensor<T, 2>::From(*box_delta);
T ex_w, ex_h, ex_ctr_x, ex_ctr_y, gt_w, gt_h, gt_ctr_x, gt_ctr_y;
for (int64_t i = 0; i < box_num; ++i) {
ex_w = ex_boxes_et(i, 2) - ex_boxes_et(i, 0) + (normalized == false);
ex_h = ex_boxes_et(i, 3) - ex_boxes_et(i, 1) + (normalized == false);
ex_ctr_x = ex_boxes_et(i, 0) + 0.5 * ex_w;
ex_ctr_y = ex_boxes_et(i, 1) + 0.5 * ex_h;
gt_w = gt_boxes_et(i, 2) - gt_boxes_et(i, 0) + (normalized == false);
gt_h = gt_boxes_et(i, 3) - gt_boxes_et(i, 1) + (normalized == false);
gt_ctr_x = gt_boxes_et(i, 0) + 0.5 * gt_w;
gt_ctr_y = gt_boxes_et(i, 1) + 0.5 * gt_h;
trg(i, 0) = (gt_ctr_x - ex_ctr_x) / ex_w;
trg(i, 1) = (gt_ctr_y - ex_ctr_y) / ex_h;
trg(i, 2) = std::log(gt_w / ex_w);
trg(i, 3) = std::log(gt_h / ex_h);
if (weights) {
trg(i, 0) = trg(i, 0) / weights[0];
trg(i, 1) = trg(i, 1) / weights[1];
trg(i, 2) = trg(i, 2) / weights[2];
trg(i, 3) = trg(i, 3) / weights[3];
}
}
}
template <typename T>
void Gather(const T* in, const int in_stride, const int* index, const int num,
T* out) {
const int stride_bytes = in_stride * sizeof(T);
for (int i = 0; i < num; ++i) {
int id = index[i];
memcpy(out + i * in_stride, in + id * in_stride, stride_bytes);
}
}
} // namespace operators
} // namespace paddle

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save