|
|
|
|
@ -31,11 +31,11 @@ train_parameters = {
|
|
|
|
|
"input_std": [0.229, 0.224, 0.225],
|
|
|
|
|
"learning_strategy": {
|
|
|
|
|
"name": "piecewise_decay",
|
|
|
|
|
"batch_size": 256,
|
|
|
|
|
"batch_size": 1,
|
|
|
|
|
"epochs": [30, 60, 90],
|
|
|
|
|
"steps": [0.1, 0.01, 0.001, 0.0001]
|
|
|
|
|
},
|
|
|
|
|
"batch_size": 256,
|
|
|
|
|
"batch_size": 1,
|
|
|
|
|
"lr": 0.1,
|
|
|
|
|
"total_images": 1281164,
|
|
|
|
|
}
|
|
|
|
|
@ -201,6 +201,7 @@ class TestImperativeResnet(unittest.TestCase):
|
|
|
|
|
def test_resnet_gpu_float32(self):
|
|
|
|
|
seed = 90
|
|
|
|
|
|
|
|
|
|
batch_size = train_parameters["batch_size"]
|
|
|
|
|
with fluid.imperative.guard():
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
|
@ -208,17 +209,21 @@ class TestImperativeResnet(unittest.TestCase):
|
|
|
|
|
resnet = ResNet()
|
|
|
|
|
optimizer = optimizer_setting(train_parameters)
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.flowers.train(), batch_size=256)
|
|
|
|
|
paddle.dataset.flowers.train(), batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
dy_param_init_value = {}
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_init_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
if batch_id >= 2:
|
|
|
|
|
if batch_id >= 1:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
x_data = np.array(
|
|
|
|
|
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
|
|
|
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
|
|
|
256, 1)
|
|
|
|
|
batch_size, 1)
|
|
|
|
|
|
|
|
|
|
img = to_variable(x_data)
|
|
|
|
|
label = to_variable(y_data)
|
|
|
|
|
@ -232,74 +237,81 @@ class TestImperativeResnet(unittest.TestCase):
|
|
|
|
|
if batch_id == 0:
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_init_value[param.name] = param._numpy()
|
|
|
|
|
if param.name not in dy_param_init_value:
|
|
|
|
|
dy_param_init_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
avg_loss._backward()
|
|
|
|
|
optimizer.minimize(avg_loss)
|
|
|
|
|
|
|
|
|
|
dy_param_value = {}
|
|
|
|
|
for param in fluid.default_main_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
dy_param_value[param.name] = param._numpy()
|
|
|
|
|
|
|
|
|
|
# with new_program_scope():
|
|
|
|
|
# fluid.default_startup_program().random_seed = seed
|
|
|
|
|
# fluid.default_main_program().random_seed = seed
|
|
|
|
|
|
|
|
|
|
# exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
|
|
|
|
|
|
# # mnist = Conv2D(1, 20, 5)
|
|
|
|
|
# mnist = MNIST()
|
|
|
|
|
# sgd = SGDOptimizer(learning_rate=1e-3)
|
|
|
|
|
# train_reader = paddle.batch(
|
|
|
|
|
# paddle.dataset.mnist.train(), batch_size=128)
|
|
|
|
|
|
|
|
|
|
# img = fluid.layers.data(
|
|
|
|
|
# name='pixel', shape=[1, 28, 28], dtype='float32')
|
|
|
|
|
# label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
|
# cost = mnist(img)
|
|
|
|
|
# loss = fluid.layers.reduce_mean(cost)
|
|
|
|
|
# sgd.minimize(loss)
|
|
|
|
|
|
|
|
|
|
# # initialize params and fetch them
|
|
|
|
|
# static_param_init_value = {}
|
|
|
|
|
# static_param_name_list = []
|
|
|
|
|
# for param in fluid.default_startup_program().global_block(
|
|
|
|
|
# ).all_parameters():
|
|
|
|
|
# static_param_name_list.append(param.name)
|
|
|
|
|
|
|
|
|
|
# out = exe.run(fluid.default_startup_program(),
|
|
|
|
|
# fetch_list=static_param_name_list)
|
|
|
|
|
|
|
|
|
|
# for i in range(len(static_param_name_list)):
|
|
|
|
|
# static_param_init_value[static_param_name_list[i]] = out[i]
|
|
|
|
|
|
|
|
|
|
# for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
# if batch_id >= 2:
|
|
|
|
|
# break
|
|
|
|
|
|
|
|
|
|
# x_data = np.array(
|
|
|
|
|
# [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
|
|
|
|
|
# y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
|
|
|
# [128, 1])
|
|
|
|
|
|
|
|
|
|
# fetch_list = [loss.name]
|
|
|
|
|
# fetch_list.extend(static_param_name_list)
|
|
|
|
|
# out = exe.run(fluid.default_main_program(),
|
|
|
|
|
# feed={"pixel": x_data,
|
|
|
|
|
# "label": y_data},
|
|
|
|
|
# fetch_list=fetch_list)
|
|
|
|
|
|
|
|
|
|
# static_param_value = {}
|
|
|
|
|
# static_out = out[0]
|
|
|
|
|
# for i in range(1, len(out)):
|
|
|
|
|
# static_param_value[static_param_name_list[i - 1]] = out[i]
|
|
|
|
|
|
|
|
|
|
# for key, value in six.iteritems(static_param_init_value):
|
|
|
|
|
# self.assertTrue(
|
|
|
|
|
# np.allclose(value.all(), dy_param_init_value[key].all()))
|
|
|
|
|
# self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
|
|
|
|
|
# for key, value in six.iteritems(static_param_value):
|
|
|
|
|
# self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
|
|
|
|
|
with new_program_scope():
|
|
|
|
|
fluid.default_startup_program().random_seed = seed
|
|
|
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(fluid.CUDAPlace(0))
|
|
|
|
|
|
|
|
|
|
resnet = ResNet()
|
|
|
|
|
optimizer = optimizer_setting(train_parameters)
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.flowers.train(), batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
img = fluid.layers.data(
|
|
|
|
|
name='pixel', shape=[3, 224, 224], dtype='float32')
|
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
|
out = resnet(img)
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=out, label=label)
|
|
|
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
|
optimizer.minimize(avg_loss)
|
|
|
|
|
|
|
|
|
|
# initialize params and fetch them
|
|
|
|
|
static_param_init_value = {}
|
|
|
|
|
static_param_name_list = []
|
|
|
|
|
for param in fluid.default_startup_program().global_block(
|
|
|
|
|
).all_parameters():
|
|
|
|
|
static_param_name_list.append(param.name)
|
|
|
|
|
|
|
|
|
|
out = exe.run(fluid.default_startup_program(),
|
|
|
|
|
fetch_list=static_param_name_list)
|
|
|
|
|
|
|
|
|
|
for i in range(len(static_param_name_list)):
|
|
|
|
|
static_param_init_value[static_param_name_list[i]] = out[i]
|
|
|
|
|
|
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
if batch_id >= 1:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
x_data = np.array(
|
|
|
|
|
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
|
|
|
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
|
|
|
[batch_size, 1])
|
|
|
|
|
|
|
|
|
|
fetch_list = [loss.name]
|
|
|
|
|
fetch_list.extend(static_param_name_list)
|
|
|
|
|
out = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={"pixel": x_data,
|
|
|
|
|
"label": y_data},
|
|
|
|
|
fetch_list=fetch_list)
|
|
|
|
|
|
|
|
|
|
static_param_value = {}
|
|
|
|
|
static_out = out[0]
|
|
|
|
|
for i in range(1, len(out)):
|
|
|
|
|
static_param_value[static_param_name_list[i - 1]] = out[i]
|
|
|
|
|
|
|
|
|
|
self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
|
|
|
|
|
|
|
|
|
|
for key, value in six.iteritems(static_param_init_value):
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(value.all(), dy_param_init_value[key].all()))
|
|
|
|
|
|
|
|
|
|
for key, value in six.iteritems(static_param_value):
|
|
|
|
|
if not np.allclose(value.all(), dy_param_value[key].all()):
|
|
|
|
|
print(key)
|
|
|
|
|
print(value, dy_param_value[key])
|
|
|
|
|
self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
|