Merge branch 'develop' of github.com:baidu/Paddle into feature/parallel_for_unittest

add_depthwiseConv_op_gpu
Yang Yu 7 years ago
commit dc488c17d1

@ -32,10 +32,12 @@ cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool)
cc_library(scope SRCS scope.cc DEPS glog threadpool)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
cc_library(device_data_transform SRCS device_data_transform.cc DEPS tensor)
cc_library(data_device_transform SRCS data_device_transform.cc DEPS tensor)
cc_library(data_type_transform SRCS data_type_transform.cc DEPS tensor)
cc_library(data_layout_transform SRCS data_layout_transform.cc DEPS tensor math_function)
cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor framework_proto selected_rows device_data_transform)
cc_test(data_transform_test SRCS data_transform_test.cc DEPS data_transform device_context)
cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor
framework_proto selected_rows data_device_transform data_type_transform data_layout_transform)
cc_library(attribute SRCS attribute.cc DEPS framework_proto)
cc_test(program_desc_test SRCS program_desc_test.cc DEPS proto_desc
@ -80,5 +82,5 @@ cc_test(init_test SRCS init_test.cc DEPS init)
cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto)
cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc)
nv_test(device_data_transform_test SRCS device_data_transform_test.cu
nv_test(data_device_transform_test SRCS data_device_transform_test.cu
DEPS operator op_registry init math_function)

@ -11,7 +11,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/device_data_transform.h"
#include "paddle/framework/data_device_transform.h"
namespace paddle {
namespace framework {

@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/platform/enforce.h"
#include <iostream>
#include "paddle/platform/enforce.h"

@ -0,0 +1,82 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/data_layout_transform.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace framework {
struct CastDataLayout {
CastDataLayout(const platform::DeviceContext* ctx,
const std::vector<int>& axis, const framework::Tensor& in,
framework::Tensor* out)
: in_(in), out_(out), ctx_(ctx), axis_(axis) {}
const framework::Tensor in_;
framework::Tensor* out_;
const platform::DeviceContext* ctx_;
const std::vector<int> axis_;
template <typename T>
void operator()() {
auto place = ctx_->GetPlace();
if (platform::is_cpu_place(place)) {
operators::math::Transpose<platform::CPUDeviceContext, T, 4> trans4;
auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
trans4(*context, in_, out_, axis_);
} else {
PADDLE_THROW("Unsupport CPU <-> GPU!");
}
}
};
void TransDataLayout(const std::vector<int>& axis,
const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
PADDLE_ENFORCE(in.IsType<Tensor>(), "Only support Tensor transform!.");
PADDLE_ENFORCE(
platform::places_are_same_class(kernel_pair.first.place_,
kernel_pair.second.place_),
"TransDataLayout only support DataLayout transform on same place!");
PADDLE_ENFORCE(kernel_pair.first.data_type_ == kernel_pair.second.data_type_,
"TransDataLayout only support Datatype are same!");
auto src = in.Get<Tensor>();
auto* dst = out->GetMutable<Tensor>();
PADDLE_ENFORCE(arity(src.dims()) == 4, "Input Arity Only Suppport 4!");
auto src_dim = src.dims();
std::vector<int64_t> dst_dim;
dst_dim.resize(axis.size());
for (size_t i = 0; i < axis.size(); i++) {
dst_dim[i] = src_dim[axis[i]];
}
dst->Resize(make_ddim(dst_dim));
auto place = kernel_pair.second.place_;
dst->mutable_data(place, src.type());
auto src_type = kernel_pair.first.data_type_;
framework::VisitDataType(src_type, CastDataLayout(ctx, axis, src, dst));
dst->set_layout(kernel_pair.second.data_layout_);
}
} // namespace framework
} // namespace paddle

@ -0,0 +1,31 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_kernel_type.h"
#include "paddle/framework/variable.h"
namespace paddle {
namespace framework {
using KernelTypePair = std::pair<OpKernelType, OpKernelType>;
void TransDataLayout(const std::vector<int>& axis,
const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out);
} // namespace framework
} // namespace paddle

@ -11,22 +11,14 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <functional>
#include "paddle/framework/data_transform.h"
#include "paddle/framework/device_data_transform.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/platform/device_context.h"
#include "paddle/framework/data_device_transform.h"
namespace paddle {
namespace framework {
DataTransformFnMap& DataTransformFnMap::Instance() {
static DataTransformFnMap data_transform_map;
return data_transform_map;
}
Tensor* DataTransform(const OpKernelType& expected_kernel_type,
const OpKernelType& kernel_type_for_var,
const Tensor& input_tensor) {
@ -58,134 +50,5 @@ void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor,
}
}
auto KernelFP32 = OpKernelType(proto::DataType::FP32, platform::CPUPlace(),
DataLayout::kNHWC, LibraryType::kPlain);
auto KernelFP64 = OpKernelType(proto::DataType::FP64, platform::CPUPlace(),
DataLayout::kNHWC, LibraryType::kPlain);
auto KernelNHWC = OpKernelType(proto::DataType::FP64, platform::CPUPlace(),
DataLayout::kNHWC, LibraryType::kPlain);
auto KernelNCHW = OpKernelType(proto::DataType::FP64, platform::CPUPlace(),
DataLayout::kNCHW, LibraryType::kPlain);
// TODO(dzhwinter): Only for testing multiple op kernel.
// Dummy transform function for library_type
// should be removed.
auto KernelPlain = OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0),
DataLayout::kAnyLayout, LibraryType::kPlain);
auto KernelCUDNN = OpKernelType(proto::DataType::FP32, platform::CUDAPlace(0),
DataLayout::kAnyLayout, LibraryType::kCUDNN);
void DummyTrans(const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
PADDLE_ENFORCE(in.IsType<Tensor>(), "Only Support Tensor transform!.");
PADDLE_ENFORCE(
platform::places_are_same_class(kernel_pair.first.place_,
kernel_pair.second.place_),
"TransDataType Only Support DataType transform on same place!");
auto src = in.Get<Tensor>();
auto* dst = out->GetMutable<Tensor>();
*dst = src;
}
void TransDataType(const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
PADDLE_ENFORCE(in.IsType<Tensor>(), "Only Support Tensor transform!.");
PADDLE_ENFORCE(
platform::places_are_same_class(kernel_pair.first.place_,
kernel_pair.second.place_),
"TransDataType Only Support DataType transform on same place!");
auto src = in.Get<Tensor>();
auto* dst = out->GetMutable<Tensor>();
auto dims = src.dims();
dst->Resize(dims);
auto dst_type = kernel_pair.second.data_type_;
auto src_type = kernel_pair.first.data_type_;
switch (src_type) {
case proto::DataType::FP32:
framework::VisitDataType(dst_type, CastDataType<float>(src, dst, ctx));
break;
case proto::DataType::FP64:
framework::VisitDataType(dst_type, CastDataType<double>(src, dst, ctx));
break;
case proto::DataType::INT32:
framework::VisitDataType(dst_type, CastDataType<int>(src, dst, ctx));
break;
case proto::DataType::INT64:
framework::VisitDataType(dst_type, CastDataType<int64_t>(src, dst, ctx));
break;
case proto::DataType::BOOL:
framework::VisitDataType(dst_type, CastDataType<bool>(src, dst, ctx));
break;
default:
PADDLE_THROW("Not support type %d", src_type);
}
}
void TransDataLayout(const std::vector<int>& axis,
const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
PADDLE_ENFORCE(in.IsType<Tensor>(), "Only support Tensor transform!.");
PADDLE_ENFORCE(
platform::places_are_same_class(kernel_pair.first.place_,
kernel_pair.second.place_),
"TransDataLayout only support DataLayout transform on same place!");
PADDLE_ENFORCE(kernel_pair.first.data_type_ == kernel_pair.second.data_type_,
"TransDataLayout only support Datatype are same!");
auto src = in.Get<Tensor>();
auto* dst = out->GetMutable<Tensor>();
PADDLE_ENFORCE(arity(src.dims()) == 4, "Input Arity Only Suppport 4!");
auto src_dim = src.dims();
std::vector<int64_t> dst_dim;
dst_dim.resize(axis.size());
for (size_t i = 0; i < axis.size(); i++) {
dst_dim[i] = src_dim[axis[i]];
}
dst->Resize(make_ddim(dst_dim));
auto place = kernel_pair.second.place_;
dst->mutable_data(place, src.type());
auto src_type = kernel_pair.first.data_type_;
framework::VisitDataType(src_type, CastDataLayout(ctx, axis, src, dst));
dst->set_layout(kernel_pair.second.data_layout_);
}
} // namespace framework
} // namespace paddle
namespace f = paddle::framework;
namespace {
std::vector<int> NHWC2NCHW = {0, 3, 1, 2};
std::vector<int> NCHW2NHWC = {0, 2, 3, 1};
}
REGISTER_DATA_TRANSFORM_FN(f::KernelFP32, f::KernelFP64, f::TransDataType);
REGISTER_DATA_TRANSFORM_FN(f::KernelPlain, f::KernelCUDNN, f::DummyTrans);
REGISTER_DATA_TRANSFORM_FN(f::KernelCUDNN, f::KernelPlain, f::DummyTrans);
REGISTER_DATA_TRANSFORM_FN(f::KernelNHWC, f::KernelNCHW,
std::bind(f::TransDataLayout, NHWC2NCHW,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3,
std::placeholders::_4));
REGISTER_DATA_TRANSFORM_FN(f::KernelNCHW, f::KernelNHWC,
std::bind(f::TransDataLayout, NCHW2NHWC,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3,
std::placeholders::_4));

@ -30,26 +30,6 @@ limitations under the License. */
namespace paddle {
namespace framework {
using KernelTypePair = std::pair<OpKernelType, OpKernelType>;
using DataTransformFn =
std::function<void(const platform::DeviceContext*, const KernelTypePair&,
const Variable&, Variable*)>;
struct KernelTypePairHash {
static void HashCombine(const OpKernelType& t, std::size_t* seed) {
OpKernelType::Hash kernel_type_hasher;
(*seed) ^= kernel_type_hasher(t) + 0x9e3779b9 + (*seed << 6) + (*seed >> 2);
}
size_t operator()(const KernelTypePair& kernel_pair) const {
std::size_t seed = 0;
HashCombine(kernel_pair.first, &seed);
HashCombine(kernel_pair.second, &seed);
return seed;
}
};
Tensor* DataTransform(const OpKernelType& expected_kernel_type,
const OpKernelType& kernel_type_for_var,
const Tensor& input_tensor);
@ -57,125 +37,5 @@ Tensor* DataTransform(const OpKernelType& expected_kernel_type,
void CopyVariableWithTensor(const Variable& in_var, const Tensor& tensor,
Variable& out_var);
template <typename InType, typename OutType>
struct CastDataTypeFunctor {
HOSTDEVICE inline OutType operator()(InType in) const {
return static_cast<OutType>(in);
}
};
template <typename InType>
struct CastDataType {
CastDataType(const framework::Tensor& in, framework::Tensor* out,
const platform::DeviceContext* ctx)
: in_(in), out_(out), ctx_(ctx) {}
const framework::Tensor in_;
framework::Tensor* out_;
const platform::DeviceContext* ctx_;
template <typename OutType>
void operator()() {
auto place = ctx_->GetPlace();
auto* in_begin = in_.data<InType>();
auto numel = in_.numel();
auto* in_end = in_begin + numel;
auto* out_begin = out_->mutable_data<OutType>(place);
if (platform::is_cpu_place(place)) {
platform::Transform<platform::CPUDeviceContext> trans;
auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
trans(*context, in_begin, in_end, out_begin,
CastDataTypeFunctor<InType, OutType>());
} else {
// TODO(dzhwinter): enhance Copy CPU<->GPU with different data type?
PADDLE_THROW("Unsupport CPU <-> GPU!");
}
}
};
struct CastDataLayout {
CastDataLayout(const platform::DeviceContext* ctx,
const std::vector<int>& axis, const framework::Tensor& in,
framework::Tensor* out)
: in_(in), out_(out), ctx_(ctx), axis_(axis) {}
const framework::Tensor in_;
framework::Tensor* out_;
const platform::DeviceContext* ctx_;
const std::vector<int> axis_;
template <typename T>
void operator()() {
auto place = ctx_->GetPlace();
if (platform::is_cpu_place(place)) {
operators::math::Transpose<platform::CPUDeviceContext, T, 4> trans4;
auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
trans4(*context, in_, out_, axis_);
} else {
PADDLE_THROW("Unsupport CPU <-> GPU!");
}
}
};
using DataTransformMap =
std::unordered_map<KernelTypePair, DataTransformFn, KernelTypePairHash>;
class DataTransformFnMap {
public:
static DataTransformFnMap& Instance();
bool Has(const KernelTypePair& key_pair) const {
return map_.find(key_pair) != map_.end();
}
void Insert(const OpKernelType& left, const OpKernelType& right,
const DataTransformFn& data_tranform_fn) {
Insert(std::make_pair(left, right), data_tranform_fn);
}
void Insert(const KernelTypePair& kernel_type_pair,
const DataTransformFn& data_tranform_fn) {
PADDLE_ENFORCE(!Has(kernel_type_pair),
"KernelTypePair %s has been registered", "");
map_.insert({kernel_type_pair, data_tranform_fn});
}
const DataTransformFn& Get(const KernelTypePair& key_pair) const {
auto data_transformer = GetNullable(key_pair);
PADDLE_ENFORCE_NOT_NULL(data_transformer,
"DataTransformFn should not be NULL");
return *data_transformer;
}
const DataTransformFn* GetNullable(const KernelTypePair& key_pair) const {
auto it = map_.find(key_pair);
if (it == map_.end()) {
return nullptr;
} else {
return &(it->second);
}
}
const DataTransformMap& Map() const { return map_; }
private:
DataTransformFnMap() = default;
DataTransformMap map_;
DISABLE_COPY_AND_ASSIGN(DataTransformFnMap);
};
// generate unique name with __LINE__
// refs https://stackoverflow.com/questions/1597007
#define TOKENPASTE(x, y) x##y
#define TOKENPASTE2(x, y) TOKENPASTE(x, y)
#define REGISTER_DATA_TRANSFORM_FN(from, to, fn) \
static int TOKENPASTE2(fn_, __LINE__)() { \
::paddle::framework::DataTransformFnMap::Instance().Insert(from, to, fn); \
return 0; \
} \
static int TOKENPASTE2(var_, __LINE__) __attribute__((unused)) = \
TOKENPASTE2(fn_, __LINE__)()
} // namespace framework
} // namespace paddle

@ -1,168 +0,0 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <array>
#include <vector>
#include <gtest/gtest.h>
#include "paddle/framework/data_transform.h"
#include "paddle/platform/device_context.h"
namespace paddle {
namespace framework {
using namespace platform;
/**
* @brief cross validation of different kernel type transform
* We use four bit map represent different combination.
* If the field has multiple possible value, only choose two of them.
* For DataType, only test the FP32(float), FP64(double).
* e.g. 0000 -> FP32, CPUPlace, kNHWC, kPlain
* 1111 -> FP64, GPUPlace, kNCHW, kMKLDNN
*/
std::array<proto::DataType, 2> kDataType = {
{proto::DataType::FP32, proto::DataType::FP64}};
std::array<Place, 2> kPlace = {{CPUPlace(), CUDAPlace(0)}};
std::array<DataLayout, 2> kDataLayout = {{
DataLayout::kNHWC, DataLayout::kNCHW,
}};
std::array<LibraryType, 2> kLibraryType = {{
LibraryType::kPlain, LibraryType::kMKLDNN,
}};
OpKernelType GenFromBit(const std::vector<bool> bits) {
return OpKernelType(kDataType[bits[0]], kPlace[bits[1]], kDataLayout[bits[2]],
kLibraryType[bits[3]]);
}
int test_value = 0;
auto kernel0 = GenFromBit({0, 0, 0, 0});
auto kernel1 = GenFromBit({0, 0, 0, 1});
auto kernel2 = GenFromBit({0, 0, 1, 0});
auto kernel3 = GenFromBit({0, 0, 1, 1});
void TransDataType_t(const platform::DeviceContext* ctx,
const KernelTypePair& p, const Variable& in,
Variable* out) {
test_value++;
}
void TransDataLayout_t(const platform::DeviceContext* ctx,
const KernelTypePair& p, const Variable& in,
Variable* out) {
test_value--;
}
void TransLibraryType_t(const platform::DeviceContext* ctx,
const KernelTypePair& p, const Variable& in,
Variable* out) {
test_value += 2;
}
} // namespace framework
} // namespace paddle
namespace frw = paddle::framework;
REGISTER_DATA_TRANSFORM_FN(frw::kernel0, frw::kernel1, frw::TransDataType_t);
REGISTER_DATA_TRANSFORM_FN(frw::kernel1, frw::kernel2, frw::TransDataLayout_t);
REGISTER_DATA_TRANSFORM_FN(frw::kernel0, frw::kernel2, frw::TransLibraryType_t);
TEST(DataTransform, Register) {
using namespace paddle::framework;
using namespace paddle::platform;
auto& instance = DataTransformFnMap::Instance();
paddle::framework::Variable in;
paddle::framework::Variable out;
DeviceContext* ctx = new CPUDeviceContext();
auto pair0 = std::make_pair(frw::kernel0, frw::kernel1);
instance.Get(pair0)(ctx, pair0, in, &out);
ASSERT_EQ(test_value, 1);
auto pair1 = std::make_pair(frw::kernel1, frw::kernel2);
instance.Get(pair1)(ctx, pair1, in, &out);
ASSERT_EQ(test_value, 0);
auto pair3 = std::make_pair(frw::kernel0, frw::kernel2);
instance.Get(pair3)(ctx, pair3, in, &out);
ASSERT_EQ(test_value, 2);
}
TEST(DataTransform, DataLayout) {
using namespace paddle::framework;
using namespace paddle::platform;
auto& instance = DataTransformFnMap::Instance();
Variable in;
Variable out;
Tensor* src = in.GetMutable<Tensor>();
src->mutable_data<double>(make_ddim({2, 3, 1, 2}), CPUPlace());
src->set_layout(DataLayout::kNHWC);
DeviceContext* ctx = new CPUDeviceContext();
{
auto kernel1 = GenFromBit({1, 0, 0, 0});
auto kernel2 = GenFromBit({1, 0, 1, 0});
auto pair0 = std::make_pair(kernel1, kernel2);
instance.Get(pair0)(ctx, pair0, in, &out);
}
Tensor dst = out.Get<Tensor>();
EXPECT_TRUE(dst.layout() == DataLayout::kNCHW);
EXPECT_TRUE(dst.dims() == make_ddim({2, 2, 3, 1}));
{
auto kernel1 = GenFromBit({1, 0, 1, 0});
auto kernel2 = GenFromBit({1, 0, 0, 0});
auto pair0 = std::make_pair(kernel1, kernel2);
instance.Get(pair0)(ctx, pair0, out, &in);
}
EXPECT_TRUE(src->layout() == DataLayout::kNHWC);
EXPECT_TRUE(src->dims() == make_ddim({2, 3, 1, 2}));
}
TEST(DataTransform, DataType) {
using namespace paddle::framework;
using namespace paddle::platform;
auto& instance = DataTransformFnMap::Instance();
DeviceContext* ctx = new CPUDeviceContext();
Variable in;
Variable out;
Tensor* src = in.GetMutable<Tensor>();
float* ptr = src->mutable_data<float>(make_ddim({2, 3}), CPUPlace());
for (int i = 0; i < 6; ++i) {
ptr[i] = i / 3;
}
{
auto kernel1 = GenFromBit({0, 0, 0, 0});
auto kernel2 = GenFromBit({1, 0, 0, 0});
auto pair0 = std::make_pair(kernel1, kernel2);
instance.Get(pair0)(ctx, pair0, in, &out);
}
Tensor dst = out.Get<Tensor>();
EXPECT_TRUE(dst.data<double>() != nullptr);
}

@ -0,0 +1,99 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/data_type_transform.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/platform/transform.h"
namespace paddle {
namespace framework {
template <typename InType, typename OutType>
struct CastDataTypeFunctor {
HOSTDEVICE inline OutType operator()(InType in) const {
return static_cast<OutType>(in);
}
};
template <typename InType>
struct CastDataType {
CastDataType(const framework::Tensor& in, framework::Tensor* out,
const platform::DeviceContext* ctx)
: in_(in), out_(out), ctx_(ctx) {}
const framework::Tensor in_;
framework::Tensor* out_;
const platform::DeviceContext* ctx_;
template <typename OutType>
void operator()() {
auto place = ctx_->GetPlace();
auto* in_begin = in_.data<InType>();
auto numel = in_.numel();
auto* in_end = in_begin + numel;
auto* out_begin = out_->mutable_data<OutType>(place);
if (platform::is_cpu_place(place)) {
platform::Transform<platform::CPUDeviceContext> trans;
auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
trans(*context, in_begin, in_end, out_begin,
CastDataTypeFunctor<InType, OutType>());
} else {
// TODO(dzhwinter): enhance Copy CPU<->GPU with different data type?
PADDLE_THROW("Unsupport CPU <-> GPU!");
}
}
};
void TransDataType(const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
PADDLE_ENFORCE(in.IsType<Tensor>(), "Only Support Tensor transform!.");
PADDLE_ENFORCE(
platform::places_are_same_class(kernel_pair.first.place_,
kernel_pair.second.place_),
"TransDataType Only Support DataType transform on same place!");
auto src = in.Get<Tensor>();
auto* dst = out->GetMutable<Tensor>();
auto dims = src.dims();
dst->Resize(dims);
auto dst_type = kernel_pair.second.data_type_;
auto src_type = kernel_pair.first.data_type_;
switch (src_type) {
case proto::DataType::FP32:
framework::VisitDataType(dst_type, CastDataType<float>(src, dst, ctx));
break;
case proto::DataType::FP64:
framework::VisitDataType(dst_type, CastDataType<double>(src, dst, ctx));
break;
case proto::DataType::INT32:
framework::VisitDataType(dst_type, CastDataType<int>(src, dst, ctx));
break;
case proto::DataType::INT64:
framework::VisitDataType(dst_type, CastDataType<int64_t>(src, dst, ctx));
break;
case proto::DataType::BOOL:
framework::VisitDataType(dst_type, CastDataType<bool>(src, dst, ctx));
break;
default:
PADDLE_THROW("Not support type %d", src_type);
}
}
} // namespace framework
} // namespace paddle

@ -0,0 +1,31 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_kernel_type.h"
#include "paddle/framework/variable.h"
#include "paddle/platform/device_context.h"
namespace paddle {
namespace framework {
using KernelTypePair = std::pair<OpKernelType, OpKernelType>;
void TransDataType(const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out);
} // namespace framework
} // namespace paddle

@ -16,7 +16,6 @@ limitations under the License. */
#include <algorithm>
#include "paddle/framework/data_transform.h"
#include "paddle/framework/device_data_transform.h"
#include "paddle/framework/executor.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/shape_inference.h"

@ -132,6 +132,8 @@ void MKLDNNLayer::reshapeInput(int& batchsize,
if (w != 0) {
width = w;
}
height = height != 0 ? height : 1;
width = width != 0 ? width : 1;
}
void MKLDNNLayer::reshapeOutput(size_t height, size_t width) {

@ -98,6 +98,8 @@ protected:
public:
explicit MKLDNNLayer(const LayerConfig& config)
: Layer(config),
ih_(0),
iw_(0),
condition_(0),
needResetBwd_(true),
outputOnlyMKLDNN_(false),

@ -1 +1 @@
grpc_library(sendrecvop_grpc SRCS recv_impl.cc send_impl.cc PROTO send_recv.proto DEPS lod_tensor selected_rows)
grpc_library(sendrecvop_grpc SRCS sendrecvop_utils.cc grpc_client.cc grpc_server.cc PROTO send_recv.proto DEPS lod_tensor selected_rows)

@ -0,0 +1,147 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "grpc_client.h"
namespace paddle {
namespace operators {
namespace detail {
bool RPCClient::AsyncSendVariable(const std::string& ep,
const platform::DeviceContext& ctx,
const framework::Scope& scope,
const std::string& var_name,
int64_t time_out) {
sendrecv::VariableMessage req;
auto* var = scope.FindVar(var_name);
SerializeToMessage(var_name, var, ctx, &req);
// varhandle
VarHandle var_h;
var_h.ep = ep;
var_h.scope = &scope;
var_h.name = var_name;
var_h.ctx = &ctx;
// stub context
auto ch = GetChannel(ep);
SendProcessor* s = new SendProcessor(ch);
s->Prepare(var_h, time_out);
s->response_call_back_ = NULL;
auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, (void*)s);
req_count_++;
return true;
}
void ProcGetResponse(const VarHandle& var_h,
const sendrecv::VariableMessage& ret_msg) {
auto* outvar = var_h.scope->FindVar(var_h.name);
std::istringstream iss(ret_msg.serialized());
DeserializeFromMessage(ret_msg, *var_h.ctx, outvar);
}
bool RPCClient::AsyncGetVariable(const std::string& ep,
const platform::DeviceContext& ctx,
const framework::Scope& scope,
const std::string& var_name,
int64_t time_out) {
sendrecv::VariableMessage req;
req.set_varname(var_name);
auto* var = scope.FindVar(var_name);
SerializeToMessage(var_name, var, ctx, &req);
// varhandle
VarHandle var_h;
var_h.ep = ep;
var_h.scope = &scope;
var_h.name = var_name;
var_h.ctx = &ctx;
// stub context
auto ch = GetChannel(ep);
GetProcessor* s = new GetProcessor(ch);
s->Prepare(var_h, time_out);
s->response_call_back_ = ProcGetResponse;
auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, (void*)s);
req_count_++;
return true;
}
bool RPCClient::wait() {
bool ok = true;
while (true) {
if (req_count_ <= 0) {
break;
}
if (!Proceed()) {
LOG(ERROR) << "Get meets CompletionQueue error";
return false;
}
}
return ok;
}
bool RPCClient::Proceed() {
void* tag = NULL;
bool ok = false;
// request counts.
if (!cq_.Next(&tag, &ok)) {
return false;
}
req_count_--;
GPR_ASSERT(ok);
PADDLE_ENFORCE(tag);
// TODO(gongwb): add more retries.
ClientBase* c = static_cast<ClientBase*>(tag);
if (!c->status_.ok()) {
delete c;
return true;
}
c->Process();
delete c;
return true;
}
std::shared_ptr<grpc::Channel> RPCClient::GetChannel(const std::string& ep) {
auto it = channels_.find(ep);
if (it != channels_.end()) {
return it->second;
}
auto ch = std::shared_ptr<grpc::Channel>(
grpc::CreateChannel(ep, grpc::InsecureChannelCredentials()));
channels_[ep] = ch;
return ch;
}
} // namespace detail
} // namespace operators
} // namespace paddle

@ -0,0 +1,147 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <grpc++/grpc++.h>
#include <grpc/support/log.h>
#include <time.h>
#include <chrono>
#include <ctime>
#include <functional>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "paddle/framework/data_type.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/operators/detail/sendrecvop_utils.h"
#include "paddle/operators/detail/simple_block_queue.h"
namespace paddle {
namespace operators {
namespace detail {
struct VarHandle {
std::string ep;
const platform::DeviceContext* ctx;
const framework::Scope* scope;
std::string name;
std::string String() const {
std::ostringstream s;
s << "name:[" << name << "] ep:[" << ep << "]";
return s.str();
}
};
void ProcGetResponse(const VarHandle& var_h,
const sendrecv::VariableMessage& msg);
class ClientBase {
public:
explicit ClientBase(std::shared_ptr<grpc::Channel> ch) {
stub_ = sendrecv::SendRecvService::NewStub(ch);
context_ = NULL;
}
virtual ~ClientBase() {}
virtual void Prepare(const VarHandle& var_info, int64_t time_out) {
context_.reset(new grpc::ClientContext());
var_h_ = var_info;
std::chrono::system_clock::time_point deadline =
std::chrono::system_clock::now() + std::chrono::milliseconds(time_out);
context_->set_deadline(deadline);
}
virtual void Process() = 0;
std::unique_ptr<sendrecv::SendRecvService::Stub> stub_;
std::unique_ptr<grpc::ClientContext> context_;
grpc::Status status_;
VarHandle var_h_;
};
typedef std::function<void(const VarHandle&, const sendrecv::VoidMessage&)>
RequestSendCallBack;
class SendProcessor : public ClientBase {
public:
explicit SendProcessor(std::shared_ptr<grpc::Channel> ch) : ClientBase(ch) {}
virtual ~SendProcessor() {}
virtual void Process() {
if (response_call_back_) {
response_call_back_(var_h_, reply_);
}
}
sendrecv::VoidMessage reply_;
RequestSendCallBack response_call_back_ = NULL;
};
typedef std::function<void(const VarHandle&, const sendrecv::VariableMessage&)>
RequestGetCallBack;
class GetProcessor : public ClientBase {
public:
explicit GetProcessor(std::shared_ptr<grpc::Channel> ch) : ClientBase(ch) {}
virtual ~GetProcessor() {}
virtual void Process() {
if (response_call_back_) {
response_call_back_(var_h_, reply_);
}
}
sendrecv::VariableMessage reply_;
RequestGetCallBack response_call_back_ = ProcGetResponse;
};
class RPCClient {
public:
bool AsyncSendVariable(const std::string& ep,
const platform::DeviceContext& ctx,
const framework::Scope& scope,
const std::string& var_name,
int64_t time_out = 600 * 1000);
bool AsyncGetVariable(const std::string& ep,
const platform::DeviceContext& ctx,
const framework::Scope& scope,
const std::string& var_name,
int64_t time_out = 600 * 1000);
bool wait();
private:
bool Proceed();
std::shared_ptr<grpc::Channel> GetChannel(const std::string& ep);
private:
grpc::CompletionQueue cq_;
std::map<std::string, std::shared_ptr<grpc::Channel>> channels_;
int64_t req_count_ = 0;
};
} // namespace detail
} // namespace operators
} // namespace paddle

@ -0,0 +1,237 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/detail/grpc_server.h"
using grpc::ServerAsyncResponseWriter;
namespace paddle {
namespace operators {
namespace detail {
enum CallStatus { PROCESS = 0, FINISH };
// reference:
// https://stackoverflow.com/questions/41732884/grpc-multiple-services-in-cpp-async-server
class RequestBase {
public:
explicit RequestBase(sendrecv::SendRecvService::AsyncService* service,
grpc::ServerCompletionQueue* cq)
: service_(service), cq_(cq), status_(PROCESS) {}
virtual ~RequestBase() {}
virtual void Process() { assert(false); }
CallStatus Status() { return status_; }
void SetStatus(CallStatus status) { status_ = status; }
protected:
grpc::ServerContext ctx_;
sendrecv::SendRecvService::AsyncService* service_;
grpc::ServerCompletionQueue* cq_;
CallStatus status_;
};
typedef std::pair<std::string, sendrecv::VariableMessage> MessageWithName;
class RequestSend final : public RequestBase {
public:
explicit RequestSend(sendrecv::SendRecvService::AsyncService* service,
grpc::ServerCompletionQueue* cq,
SimpleBlockQueue<MessageWithName>* queue)
: RequestBase(service, cq), queue_(queue), responder_(&ctx_) {
service_->RequestSendVariable(&ctx_, &request_, &responder_, cq_, cq_,
this);
}
virtual ~RequestSend() {}
virtual void Process() {
MessageWithName msg_with_name =
std::make_pair(request_.varname(), std::move(request_));
queue_->Push(std::move(msg_with_name));
// TODO(gongwb): check var's info.
responder_.Finish(reply_, grpc::Status::OK, this);
}
protected:
sendrecv::VariableMessage request_;
sendrecv::VoidMessage reply_;
SimpleBlockQueue<MessageWithName>* queue_;
ServerAsyncResponseWriter<sendrecv::VoidMessage> responder_;
};
class RequestGet final : public RequestBase {
public:
explicit RequestGet(sendrecv::SendRecvService::AsyncService* service,
grpc::ServerCompletionQueue* cq, framework::Scope* scope)
: RequestBase(service, cq), responder_(&ctx_), scope_(scope) {
service_->RequestGetVariable(&ctx_, &request_, &responder_, cq_, cq_, this);
}
virtual ~RequestGet() {}
virtual void Process() {
// proc request.
std::string var_name = request_.varname();
auto* var = scope_->FindVar(var_name);
SerializeToMessage(var_name, var, platform::CPUDeviceContext(), &reply_);
// TODO(gongwb): check var's info.
responder_.Finish(reply_, grpc::Status::OK, this);
}
protected:
sendrecv::VariableMessage request_;
sendrecv::VariableMessage reply_;
ServerAsyncResponseWriter<sendrecv::VariableMessage> responder_;
framework::Scope* scope_;
};
void AsyncGRPCServer::RunSyncUpdate() {
grpc::ServerBuilder builder;
builder.AddListeningPort(address_, grpc::InsecureServerCredentials());
builder.RegisterService(&service_);
cq_send_ = builder.AddCompletionQueue();
cq_get_ = builder.AddCompletionQueue();
server_ = builder.BuildAndStart();
LOG(INFO) << "Server listening on " << address_ << std::endl;
std::function<void()> send_register =
std::bind(&AsyncGRPCServer::TryToRegisterNewSendOne, this);
std::function<void()> get_register =
std::bind(&AsyncGRPCServer::TryToRegisterNewGetOne, this);
t_send_.reset(
new std::thread(std::bind(&AsyncGRPCServer::HandleRequest, this, false,
cq_send_.get(), "cq_send", send_register)));
t_get_.reset(
new std::thread(std::bind(&AsyncGRPCServer::HandleRequest, this, true,
cq_get_.get(), "cq_get", get_register)));
// wait server
server_->Wait();
t_send_->join();
t_get_->join();
}
void AsyncGRPCServer::ShutdownQueue() {
std::unique_lock<std::mutex> lock(cq_mutex_);
cq_send_->Shutdown();
cq_get_->Shutdown();
is_shut_down_ = true;
}
// This URL explains why shutdown is complicate:
// https://stackoverflow.com/questions/35708348/grpc-what-is-the-recommended-way-to-shut-down-an-asynchronous-server-in-c
void AsyncGRPCServer::ShutDown() {
server_->Shutdown();
ShutdownQueue();
}
void AsyncGRPCServer::TryToRegisterNewSendOne() {
std::unique_lock<std::mutex> lock(cq_mutex_);
if (is_shut_down_) {
return;
}
RequestSend* send =
new RequestSend(&service_, cq_send_.get(), &var_recv_queue_);
VLOG(4) << "create RequestSend status:" << send->Status();
}
void AsyncGRPCServer::TryToRegisterNewGetOne() {
std::unique_lock<std::mutex> lock(cq_mutex_);
if (is_shut_down_) {
return;
}
RequestGet* get = new RequestGet(&service_, cq_get_.get(), scope_);
VLOG(4) << "create Requestget status:" << get->Status();
}
void AsyncGRPCServer::SetFinishOrDelete(RequestBase*& last) {
std::unique_lock<std::mutex> lock(cq_mutex_);
if (is_shut_down_) {
delete last;
last = NULL;
return;
}
last->SetStatus(FINISH);
return;
}
void AsyncGRPCServer::HandleRequest(bool wait, grpc::ServerCompletionQueue* cq,
std::string cq_name,
std::function<void()> TryToRegisterNewOne) {
TryToRegisterNewOne();
void* tag = NULL;
bool ok = false;
while (true) {
if (!cq->Next(&tag, &ok)) {
LOG(INFO) << cq_name << " get CompletionQueue shutdown!";
break;
}
if (wait && !done_) {
Wait();
}
RequestBase* base = (RequestBase*)tag;
if (!ok) {
VLOG(4) << cq_name << " recv no regular event";
TryToRegisterNewOne();
delete base;
continue;
}
switch (base->Status()) {
case PROCESS: {
VLOG(4) << cq_name << " status:" << base->Status();
TryToRegisterNewOne();
base->Process();
SetFinishOrDelete(base);
break;
}
case FINISH: {
VLOG(4) << cq_name << " status:" << base->Status();
delete base;
break;
}
default: { assert(false); }
}
}
}
void AsyncGRPCServer::Wait() {
std::unique_lock<std::mutex> lock(this->mutex_);
condition_.wait(lock, [=] { return this->done_ == true; });
}
void AsyncGRPCServer::Reset() {
std::lock_guard<std::mutex> lock(this->mutex_);
done_ = false;
}
void AsyncGRPCServer::Done() {
{
std::lock_guard<std::mutex> lock(this->mutex_);
done_ = true;
}
condition_.notify_all();
}
} // namespace detail
} // namespace operators
} // namespace paddle

@ -0,0 +1,91 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/framework/var_type.h"
#include "paddle/operators/detail/simple_block_queue.h"
#include "paddle/operators/detail/send_recv.grpc.pb.h"
#include "paddle/operators/detail/send_recv.pb.h"
#include <grpc++/grpc++.h>
#include <grpc/support/log.h>
#include <thread>
#include "paddle/operators/detail/sendrecvop_utils.h"
namespace paddle {
namespace operators {
namespace detail {
typedef std::pair<std::string, sendrecv::VariableMessage> MessageWithName;
class RequestBase;
class AsyncGRPCServer final : public sendrecv::SendRecvService::Service {
public:
explicit AsyncGRPCServer(std::string address) { address_ = address; }
void RunSyncUpdate();
void Reset();
void Done();
void SetScope(framework::Scope *scope) { scope_ = scope; }
const MessageWithName Get() { return this->var_recv_queue_.Pop(); }
void Push(const MessageWithName &msg) { this->var_recv_queue_.Push(msg); }
void ShutDown();
protected:
void Wait();
void HandleRequest(bool wait, grpc::ServerCompletionQueue *cq,
std::string cq_name,
std::function<void()> TryToRegisterNewOne);
void TryToRegisterNewSendOne();
void TryToRegisterNewGetOne();
void SetFinishOrDelete(RequestBase *&last);
void ShutdownQueue();
private:
std::mutex cq_mutex_;
volatile bool is_shut_down_ = false;
std::unique_ptr<grpc::ServerCompletionQueue> cq_send_;
std::unique_ptr<grpc::ServerCompletionQueue> cq_get_;
sendrecv::SendRecvService::AsyncService service_;
std::unique_ptr<grpc::Server> server_;
std::string address_;
framework::Scope *scope_;
// received variable from RPC, operators fetch variable from this queue.
SimpleBlockQueue<MessageWithName> var_recv_queue_;
// condition of the sub program
std::mutex mutex_;
volatile mutable bool done_;
std::condition_variable condition_;
std::unique_ptr<std::thread> t_send_;
std::unique_ptr<std::thread> t_get_;
};
}; // namespace detail
}; // namespace operators
}; // namespace paddle

@ -1,65 +0,0 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "send_recv_impl.h"
namespace paddle {
namespace operators {
namespace detail {
Status SendRecvServerImpl::SendVariable(ServerContext *context,
const VariableMessage *in_var,
VoidMessage *out_var) {
MessageWithName msg_with_name =
std::make_pair(in_var->varname(), std::move(*in_var));
var_recv_queue_.Push(std::move(msg_with_name));
return Status::OK;
}
Status SendRecvServerImpl::GetVariable(ServerContext *context,
const VariableMessage *in_var,
VariableMessage *out_var) {
std::string get_var_name = in_var->varname();
auto *var = scope_->FindVar(get_var_name);
SerializeToMessage(get_var_name, var, platform::CPUDeviceContext(), out_var);
return Status::OK;
}
Status SendRecvServerImpl::Wait(ServerContext *context,
const VoidMessage *in_var,
VoidMessage *out_var) {
{
std::unique_lock<std::mutex> lock(this->mutex_);
condition_.wait(lock, [=] { return this->done_ == true; });
}
return Status::OK;
}
void SendRecvServerImpl::Reset() {
std::lock_guard<std::mutex> lock(this->mutex_);
done_ = false;
}
void SendRecvServerImpl::Done() {
{
std::lock_guard<std::mutex> lock(this->mutex_);
done_ = true;
}
condition_.notify_all();
}
} // namespace detail
} // namespace operators
} // namespace paddle

@ -1,67 +0,0 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "send_recv_impl.h"
namespace paddle {
namespace operators {
namespace detail {
bool RPCClient::SendVariable(const framework::Scope& scope,
const std::string& inname) {
ClientContext context;
VariableMessage msg;
VoidMessage out_msg;
// FIXME(typhoonzero): pass device context to here.
auto ctx = platform::CPUDeviceContext();
auto* var = scope.FindVar(inname);
PADDLE_ENFORCE(var);
SerializeToMessage(inname, var, ctx, &msg);
Status status = stub_->SendVariable(&context, msg, &out_msg);
if (!status.ok()) {
LOG(ERROR) << "gRPC error: " << status.error_message();
return false;
}
return true;
}
bool RPCClient::GetVariable(const framework::Scope& scope,
const std::string& outname) {
ClientContext context;
VariableMessage call_msg, ret_msg;
call_msg.set_varname(outname);
auto ctx = platform::CPUDeviceContext();
Status status = stub_->GetVariable(&context, call_msg, &ret_msg);
auto* outvar = scope.FindVar(outname);
if (!status.ok()) {
LOG(ERROR) << "gRPC error: " << status.error_message();
return false;
}
std::istringstream iss(ret_msg.serialized());
DeserializeFromMessage(ret_msg, ctx, outvar);
return true;
}
void RPCClient::Wait() {
ClientContext context;
VoidMessage call_msg, ret_msg;
stub_->Wait(&context, call_msg, &ret_msg);
}
} // namespace detail
} // namespace operators
} // namespace paddle

@ -21,8 +21,6 @@ service SendRecvService {
rpc SendVariable(VariableMessage) returns (VoidMessage) {}
// Argument VariableMessage for GetVariable should only contain varname.
rpc GetVariable(VariableMessage) returns (VariableMessage) {}
// wait for one execution of the program
rpc Wait(VoidMessage) returns (VoidMessage) {}
}
// VariableMessage is serialized paddle variable message.

@ -1,141 +0,0 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/framework/var_type.h"
#include "paddle/operators/detail/simple_block_queue.h"
#include "paddle/operators/detail/send_recv.grpc.pb.h"
#include "paddle/operators/detail/send_recv.pb.h"
#include <grpc++/grpc++.h>
using grpc::Channel;
using grpc::Server;
using grpc::ServerContext;
using grpc::ServerReader;
using grpc::ServerBuilder;
using grpc::ClientContext;
using grpc::ClientReader;
using grpc::ClientReaderWriter;
using grpc::ClientWriter;
using grpc::Status;
using sendrecv::SendRecvService;
using sendrecv::VariableMessage;
using sendrecv::VoidMessage;
namespace paddle {
namespace operators {
namespace detail {
typedef std::pair<std::string, sendrecv::VariableMessage> MessageWithName;
class SendRecvServerImpl final : public SendRecvService::Service {
public:
explicit SendRecvServerImpl() {}
Status SendVariable(ServerContext *context, const VariableMessage *in_var,
VoidMessage *out_var) override;
Status GetVariable(ServerContext *context, const VariableMessage *in_var,
VariableMessage *out_var) override;
Status Wait(ServerContext *context, const VoidMessage *in_var,
VoidMessage *out_var) override;
void Reset();
void Done();
void SetScope(framework::Scope *scope) { scope_ = scope; };
const MessageWithName Get() { return this->var_recv_queue_.Pop(); }
void Push(const MessageWithName &msg) { this->var_recv_queue_.Push(msg); }
private:
// received variable from RPC, operators fetch variable from this queue.
SimpleBlockQueue<MessageWithName> var_recv_queue_;
framework::Scope *scope_;
// condition of the sub program
std::mutex mutex_;
bool done_;
std::condition_variable condition_;
};
// RPCClient is a class to send tensors to pserver sub-network
// using different hashing methods.
class RPCClient {
public:
RPCClient(std::shared_ptr<Channel> channel)
: stub_(SendRecvService::NewStub(channel)) {}
bool SendVariable(const framework::Scope &scope, const std::string &inname);
bool GetVariable(const framework::Scope &scope, const std::string &outname);
void Wait();
private:
std::unique_ptr<SendRecvService::Stub> stub_;
};
inline void SerializeToMessage(const std::string &name,
const framework::Variable *var,
const platform::DeviceContext &ctx,
VariableMessage *msg) {
msg->set_varname(name);
std::ostringstream oss;
switch (framework::ToVarType(var->Type())) {
case framework::proto::VarDesc_VarType_LOD_TENSOR:
msg->set_type(sendrecv::VarType::LOD_TENSOR);
framework::SerializeToStream(oss, var->Get<framework::LoDTensor>(), ctx);
break;
case framework::proto::VarDesc_VarType_SELECTED_ROWS:
msg->set_type(sendrecv::VarType::SELECTED_ROWS);
framework::SerializeToStream(oss, var->Get<framework::SelectedRows>(),
ctx);
break;
default: {
PADDLE_THROW("Serialize does not support type: %s",
typeid(var->Type()).name());
break;
}
}
msg->set_serialized(oss.str());
}
inline void DeserializeFromMessage(const VariableMessage &msg,
const platform::DeviceContext &ctx,
framework::Variable *var) {
using namespace paddle::framework::proto;
std::istringstream iss(msg.serialized());
switch (msg.type()) {
case sendrecv::VarType::LOD_TENSOR:
DeserializeFromStream(iss, var->GetMutable<framework::LoDTensor>(), ctx);
break;
case sendrecv::VarType::SELECTED_ROWS: {
DeserializeFromStream(iss, var->GetMutable<framework::SelectedRows>(),
ctx);
break;
}
default: {
PADDLE_THROW("Deserialize does not support type: %s",
typeid(var->Type()).name());
break;
}
}
}
} // namespace detail
} // namespace operators
} // namespace paddle

@ -0,0 +1,68 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/detail/sendrecvop_utils.h"
namespace paddle {
namespace operators {
namespace detail {
void SerializeToMessage(const std::string& name, const framework::Variable* var,
const platform::DeviceContext& ctx,
sendrecv::VariableMessage* msg) {
msg->set_varname(name);
std::ostringstream oss;
switch (framework::ToVarType(var->Type())) {
case framework::proto::VarDesc_VarType_LOD_TENSOR:
msg->set_type(sendrecv::VarType::LOD_TENSOR);
framework::SerializeToStream(oss, var->Get<framework::LoDTensor>(), ctx);
break;
case framework::proto::VarDesc_VarType_SELECTED_ROWS:
msg->set_type(sendrecv::VarType::SELECTED_ROWS);
framework::SerializeToStream(oss, var->Get<framework::SelectedRows>(),
ctx);
break;
default: {
PADDLE_THROW("Serialize does not support type: %s",
typeid(var->Type()).name());
break;
}
}
msg->set_serialized(oss.str());
}
void DeserializeFromMessage(const sendrecv::VariableMessage& msg,
const platform::DeviceContext& ctx,
framework::Variable* var) {
std::istringstream iss(msg.serialized());
switch (msg.type()) {
case sendrecv::VarType::LOD_TENSOR:
DeserializeFromStream(iss, var->GetMutable<framework::LoDTensor>(), ctx);
break;
case sendrecv::VarType::SELECTED_ROWS: {
DeserializeFromStream(iss, var->GetMutable<framework::SelectedRows>(),
ctx);
break;
}
default: {
PADDLE_THROW("Deserialize does not support type: %s",
typeid(var->Type()).name());
break;
}
}
}
} // namespace detail
} // namespace operators
} // namespace paddle

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save