Merge pull request #2982 from guoshengCS/add-ROIPooling
add ROIPooling for Fast(er) R-CNNmobile_baidu
commit
dcc66c6d7c
@ -0,0 +1,220 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "ROIPoolLayer.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
REGISTER_LAYER(roi_pool, ROIPoolLayer);
|
||||
|
||||
bool ROIPoolLayer::init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) {
|
||||
Layer::init(layerMap, parameterMap);
|
||||
|
||||
const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf();
|
||||
pooledWidth_ = layerConf.pooled_width();
|
||||
pooledHeight_ = layerConf.pooled_height();
|
||||
spatialScale_ = layerConf.spatial_scale();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void ROIPoolLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
|
||||
const ROIPoolConfig& layerConf = config_.inputs(0).roi_pool_conf();
|
||||
height_ = getInput(0).getFrameHeight();
|
||||
if (!height_) height_ = layerConf.height();
|
||||
width_ = getInput(0).getFrameWidth();
|
||||
if (!width_) width_ = layerConf.width();
|
||||
channels_ = getInputValue(0)->getWidth() / width_ / height_;
|
||||
|
||||
size_t batchSize = getInput(0).getBatchSize();
|
||||
size_t numROIs = getInput(1).getBatchSize();
|
||||
|
||||
MatrixPtr dataValue = getInputValue(0);
|
||||
MatrixPtr roiValue = getInputValue(1);
|
||||
resetOutput(numROIs, channels_ * pooledHeight_ * pooledWidth_);
|
||||
MatrixPtr outputValue = getOutputValue();
|
||||
|
||||
if (useGpu_) { // TODO(guosheng): implement on GPU later
|
||||
MatrixPtr dataCpuBuffer;
|
||||
Matrix::resizeOrCreate(dataCpuBuffer,
|
||||
dataValue->getHeight(),
|
||||
dataValue->getWidth(),
|
||||
false,
|
||||
false);
|
||||
MatrixPtr roiCpuBuffer;
|
||||
Matrix::resizeOrCreate(roiCpuBuffer,
|
||||
roiValue->getHeight(),
|
||||
roiValue->getWidth(),
|
||||
false,
|
||||
false);
|
||||
dataCpuBuffer->copyFrom(*dataValue);
|
||||
roiCpuBuffer->copyFrom(*roiValue);
|
||||
dataValue = dataCpuBuffer;
|
||||
roiValue = roiCpuBuffer;
|
||||
MatrixPtr outputCpuBuffer;
|
||||
Matrix::resizeOrCreate(outputCpuBuffer,
|
||||
outputValue->getHeight(),
|
||||
outputValue->getWidth(),
|
||||
false,
|
||||
false);
|
||||
outputCpuBuffer->copyFrom(*outputValue);
|
||||
outputValue = outputCpuBuffer;
|
||||
}
|
||||
|
||||
real* bottomData = dataValue->getData();
|
||||
size_t batchOffset = dataValue->getWidth();
|
||||
size_t channelOffset = height_ * width_;
|
||||
real* bottomROIs = roiValue->getData();
|
||||
size_t roiOffset = roiValue->getWidth();
|
||||
size_t poolChannelOffset = pooledHeight_ * pooledWidth_;
|
||||
|
||||
real* outputData = outputValue->getData();
|
||||
Matrix::resizeOrCreate(maxIdxs_,
|
||||
numROIs,
|
||||
channels_ * pooledHeight_ * pooledWidth_,
|
||||
false,
|
||||
false);
|
||||
real* argmaxData = maxIdxs_->getData();
|
||||
|
||||
for (size_t n = 0; n < numROIs; ++n) {
|
||||
// the first five elememts of each RoI should be:
|
||||
// batch_idx, roi_x_start, roi_y_start, roi_x_end, roi_y_end
|
||||
size_t roiBatchIdx = bottomROIs[0];
|
||||
size_t roiStartW = round(bottomROIs[1] * spatialScale_);
|
||||
size_t roiStartH = round(bottomROIs[2] * spatialScale_);
|
||||
size_t roiEndW = round(bottomROIs[3] * spatialScale_);
|
||||
size_t roiEndH = round(bottomROIs[4] * spatialScale_);
|
||||
CHECK_GE(roiBatchIdx, 0);
|
||||
CHECK_LT(roiBatchIdx, batchSize);
|
||||
size_t roiHeight = std::max(roiEndH - roiStartH + 1, 1UL);
|
||||
size_t roiWidth = std::max(roiEndW - roiStartW + 1, 1UL);
|
||||
real binSizeH =
|
||||
static_cast<real>(roiHeight) / static_cast<real>(pooledHeight_);
|
||||
real binSizeW =
|
||||
static_cast<real>(roiWidth) / static_cast<real>(pooledWidth_);
|
||||
real* batchData = bottomData + batchOffset * roiBatchIdx;
|
||||
for (size_t c = 0; c < channels_; ++c) {
|
||||
for (size_t ph = 0; ph < pooledHeight_; ++ph) {
|
||||
for (size_t pw = 0; pw < pooledWidth_; ++pw) {
|
||||
size_t hstart = static_cast<size_t>(std::floor(ph * binSizeH));
|
||||
size_t wstart = static_cast<size_t>(std::floor(pw * binSizeW));
|
||||
size_t hend = static_cast<size_t>(std::ceil((ph + 1) * binSizeH));
|
||||
size_t wend = static_cast<size_t>(std::ceil((pw + 1) * binSizeW));
|
||||
hstart = std::min(std::max(hstart + roiStartH, 0UL), height_);
|
||||
wstart = std::min(std::max(wstart + roiStartW, 0UL), width_);
|
||||
hend = std::min(std::max(hend + roiStartH, 0UL), height_);
|
||||
wend = std::min(std::max(wend + roiStartW, 0UL), width_);
|
||||
|
||||
bool isEmpty = (hend <= hstart) || (wend <= wstart);
|
||||
size_t poolIndex = ph * pooledWidth_ + pw;
|
||||
if (isEmpty) {
|
||||
outputData[poolIndex] = 0;
|
||||
argmaxData[poolIndex] = -1;
|
||||
}
|
||||
|
||||
for (size_t h = hstart; h < hend; ++h) {
|
||||
for (size_t w = wstart; w < wend; ++w) {
|
||||
size_t index = h * width_ + w;
|
||||
if (batchData[index] > outputData[poolIndex]) {
|
||||
outputData[poolIndex] = batchData[index];
|
||||
argmaxData[poolIndex] = index;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
batchData += channelOffset;
|
||||
outputData += poolChannelOffset;
|
||||
argmaxData += poolChannelOffset;
|
||||
}
|
||||
bottomROIs += roiOffset;
|
||||
}
|
||||
if (useGpu_) {
|
||||
getOutputValue()->copyFrom(*outputValue);
|
||||
}
|
||||
}
|
||||
|
||||
void ROIPoolLayer::backward(const UpdateCallback& callback) {
|
||||
MatrixPtr inGradValue = getInputGrad(0);
|
||||
MatrixPtr outGradValue = getOutputGrad();
|
||||
MatrixPtr roiValue = getInputValue(1);
|
||||
|
||||
if (useGpu_) {
|
||||
MatrixPtr inGradCpuBuffer;
|
||||
Matrix::resizeOrCreate(inGradCpuBuffer,
|
||||
inGradValue->getHeight(),
|
||||
inGradValue->getWidth(),
|
||||
false,
|
||||
false);
|
||||
MatrixPtr outGradCpuBuffer;
|
||||
Matrix::resizeOrCreate(outGradCpuBuffer,
|
||||
outGradValue->getHeight(),
|
||||
outGradValue->getWidth(),
|
||||
false,
|
||||
false);
|
||||
MatrixPtr roiCpuBuffer;
|
||||
Matrix::resizeOrCreate(roiCpuBuffer,
|
||||
roiValue->getHeight(),
|
||||
roiValue->getWidth(),
|
||||
false,
|
||||
false);
|
||||
inGradCpuBuffer->copyFrom(*inGradValue);
|
||||
outGradCpuBuffer->copyFrom(*outGradValue);
|
||||
roiCpuBuffer->copyFrom(*roiValue);
|
||||
inGradValue = inGradCpuBuffer;
|
||||
outGradValue = outGradCpuBuffer;
|
||||
roiValue = roiCpuBuffer;
|
||||
}
|
||||
|
||||
real* bottomROIs = roiValue->getData();
|
||||
size_t numROIs = getInput(1).getBatchSize();
|
||||
size_t roiOffset = getInputValue(1)->getWidth();
|
||||
|
||||
real* inDiffData = inGradValue->getData();
|
||||
size_t batchOffset = getInputValue(0)->getWidth();
|
||||
size_t channelOffset = height_ * width_;
|
||||
|
||||
real* outDiffData = outGradValue->getData();
|
||||
size_t poolChannelOffset = pooledHeight_ * pooledWidth_;
|
||||
real* argmaxData = maxIdxs_->getData();
|
||||
|
||||
for (size_t n = 0; n < numROIs; ++n) {
|
||||
size_t roiBatchIdx = bottomROIs[0];
|
||||
real* batchDiffData = inDiffData + batchOffset * roiBatchIdx;
|
||||
for (size_t c = 0; c < channels_; ++c) {
|
||||
for (size_t ph = 0; ph < pooledHeight_; ++ph) {
|
||||
for (size_t pw = 0; pw < pooledWidth_; ++pw) {
|
||||
size_t poolIndex = ph * pooledWidth_ + pw;
|
||||
if (argmaxData[poolIndex] > 0) {
|
||||
size_t index = static_cast<size_t>(argmaxData[poolIndex]);
|
||||
batchDiffData[index] += outDiffData[poolIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
batchDiffData += channelOffset;
|
||||
outDiffData += poolChannelOffset;
|
||||
argmaxData += poolChannelOffset;
|
||||
}
|
||||
bottomROIs += roiOffset;
|
||||
}
|
||||
|
||||
if (useGpu_) {
|
||||
getInputGrad(0)->copyFrom(*inGradValue);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,56 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "Layer.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* A layer used by Fast R-CNN to extract feature maps of ROIs from the last
|
||||
* feature map.
|
||||
* - Input: This layer needs two input layers: The first input layer is a
|
||||
* convolution layer; The second input layer contains the ROI data
|
||||
* which is the output of ProposalLayer in Faster R-CNN. layers for
|
||||
* generating bbox location offset and the classification confidence.
|
||||
* - Output: The ROIs' feature map.
|
||||
* Reference:
|
||||
* Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
|
||||
* Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
|
||||
* Networks
|
||||
*/
|
||||
|
||||
class ROIPoolLayer : public Layer {
|
||||
protected:
|
||||
size_t channels_;
|
||||
size_t width_;
|
||||
size_t height_;
|
||||
size_t pooledWidth_;
|
||||
size_t pooledHeight_;
|
||||
real spatialScale_;
|
||||
|
||||
// Since there is no int matrix, use real maxtrix instead.
|
||||
MatrixPtr maxIdxs_;
|
||||
|
||||
public:
|
||||
explicit ROIPoolLayer(const LayerConfig& config) : Layer(config) {}
|
||||
|
||||
bool init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) override;
|
||||
|
||||
void forward(PassType passType) override;
|
||||
void backward(const UpdateCallback& callback = nullptr) override;
|
||||
};
|
||||
} // namespace paddle
|
@ -0,0 +1,98 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 588
|
||||
active_type: ""
|
||||
height: 14
|
||||
width: 14
|
||||
}
|
||||
layers {
|
||||
name: "rois"
|
||||
type: "data"
|
||||
size: 10
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__conv_0__"
|
||||
type: "exconv"
|
||||
size: 3136
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___conv_0__.w0"
|
||||
conv_conf {
|
||||
filter_size: 3
|
||||
channels: 3
|
||||
stride: 1
|
||||
padding: 1
|
||||
groups: 1
|
||||
filter_channels: 3
|
||||
output_x: 14
|
||||
img_size: 14
|
||||
caffe_mode: true
|
||||
filter_size_y: 3
|
||||
padding_y: 1
|
||||
stride_y: 1
|
||||
output_y: 14
|
||||
img_size_y: 14
|
||||
}
|
||||
}
|
||||
bias_parameter_name: "___conv_0__.wbias"
|
||||
num_filters: 16
|
||||
shared_biases: true
|
||||
height: 14
|
||||
width: 14
|
||||
}
|
||||
layers {
|
||||
name: "__roi_pool_0__"
|
||||
type: "roi_pool"
|
||||
size: 784
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
roi_pool_conf {
|
||||
pooled_width: 7
|
||||
pooled_height: 7
|
||||
spatial_scale: 0.0625
|
||||
}
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "rois"
|
||||
}
|
||||
height: 7
|
||||
width: 7
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.w0"
|
||||
size: 432
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.272165526976
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.wbias"
|
||||
size: 16
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 16
|
||||
dims: 1
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "rois"
|
||||
output_layer_names: "__roi_pool_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "rois"
|
||||
layer_names: "__conv_0__"
|
||||
layer_names: "__roi_pool_0__"
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "rois"
|
||||
output_layer_names: "__roi_pool_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,23 @@
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
data = data_layer(name='data', size=3 * 14 * 14, height=14, width=14)
|
||||
|
||||
rois = data_layer(name='rois', size=10)
|
||||
|
||||
conv = img_conv_layer(
|
||||
input=data,
|
||||
filter_size=3,
|
||||
num_channels=3,
|
||||
num_filters=16,
|
||||
padding=1,
|
||||
act=LinearActivation(),
|
||||
bias_attr=True)
|
||||
|
||||
roi_pool = roi_pool_layer(
|
||||
input=conv,
|
||||
rois=rois,
|
||||
pooled_width=7,
|
||||
pooled_height=7,
|
||||
spatial_scale=1. / 16)
|
||||
|
||||
outputs(roi_pool)
|
Loading…
Reference in new issue