parent
f90c06bcee
commit
dcf3ffd980
@ -0,0 +1,115 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/log_loss_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class LogLossOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Predicted"),
|
||||
"Input(Predicted) must be initialized.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Labels"),
|
||||
"Input(Labels) must be initialized.");
|
||||
|
||||
auto pred_dims = ctx->GetInputDim("Predicted");
|
||||
auto label_dims = ctx->GetInputDim("Labels");
|
||||
|
||||
PADDLE_ENFORCE_EQ(pred_dims, label_dims);
|
||||
PADDLE_ENFORCE_EQ(pred_dims.size(), 2,
|
||||
"The rank of Input(Predicted) must be 2 and the shape is "
|
||||
"[batch_size, 1].");
|
||||
PADDLE_ENFORCE_EQ(pred_dims[1], 1,
|
||||
"Each row of Input(Predicted) contains a real value, "
|
||||
"so the 2nd dimension of Input(X) must be 1.");
|
||||
|
||||
ctx->SetOutputDim("Loss", {pred_dims[0], 1});
|
||||
ctx->ShareLoD("Predicted", "Loss");
|
||||
}
|
||||
};
|
||||
|
||||
template <typename AttrType>
|
||||
class LogLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
LogLossOpMaker(framework::OpProto* proto,
|
||||
framework::OpAttrChecker* op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Predicted",
|
||||
"The input value (Predicted) of Log loss op."
|
||||
"Predicted is a 2-D tensor with shape [batch_size, 1].");
|
||||
AddInput("Labels",
|
||||
"The target value (Labels) of Log loss op."
|
||||
"Labels is a 2-D tensor with shape [batch_size, 1].");
|
||||
AddOutput("Loss",
|
||||
"The output tensor with shape [batch_size, 1] "
|
||||
"which represents the log loss.");
|
||||
AddAttr<AttrType>("epsilon", "Epsilon in log loss.");
|
||||
AddComment(R"DOC(
|
||||
LogLoss Operator.
|
||||
|
||||
Log loss is a loss function used for binary classification. Log Loss quantifies
|
||||
the accuracy of a classifier by penalising false classifications. Minimising the
|
||||
Log Loss is equivalent to maximising the accuracy of the classifier. We define
|
||||
Predicted as the values predicted by our model and Labels as the target ground
|
||||
truth value. Log loss can evaluate how close the predicted values are to the
|
||||
target. The shapes of Predicted and Labels are both [batch_size, 1].
|
||||
The equation is:
|
||||
|
||||
$$
|
||||
Loss = - Labels * log(Predicted + \epsilon) -
|
||||
(1 - Labels) * log(1 - Predicted + \epsilon)
|
||||
$$
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class LogLossGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Predicted"),
|
||||
"Input(Predicted) should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Labels"),
|
||||
"Input(Labels) should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
|
||||
"Input(Loss@GRAD) should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Predicted")),
|
||||
"Output(Predicted@GRAD) should not be null.");
|
||||
|
||||
auto pred_dims = ctx->GetInputDim("Predicted");
|
||||
auto label_dims = ctx->GetInputDim("Labels");
|
||||
auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss"));
|
||||
PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims);
|
||||
|
||||
auto pred_grad_name = framework::GradVarName("Predicted");
|
||||
ctx->SetOutputDim(pred_grad_name, pred_dims);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(log_loss, ops::LogLossOp, ops::LogLossOpMaker<float>, log_loss_grad,
|
||||
ops::LogLossGradOp);
|
||||
REGISTER_OP_CPU_KERNEL(log_loss,
|
||||
ops::LogLossKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
log_loss_grad, ops::LogLossGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,22 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/log_loss_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(log_loss,
|
||||
ops::LogLossKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
log_loss_grad, ops::LogLossGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,75 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T, typename AttrType = T>
|
||||
class LogLossKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* loss_out = ctx.Output<Tensor>("Loss");
|
||||
|
||||
loss_out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));
|
||||
|
||||
auto prediction = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Predicted"));
|
||||
auto label = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Labels"));
|
||||
|
||||
auto loss = EigenVector<T>::Flatten(*loss_out);
|
||||
auto place = ctx.GetEigenDevice<Place>();
|
||||
|
||||
loss.device(place) = (-(label * (prediction + epsilon).log()) -
|
||||
((static_cast<T>(1) - label) *
|
||||
(static_cast<T>(1) - prediction + epsilon).log()));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T, typename AttrType = T>
|
||||
class LogLossGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto epsilon = static_cast<T>(ctx.Attr<AttrType>("epsilon"));
|
||||
|
||||
auto prediction = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Predicted"));
|
||||
auto label = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Labels"));
|
||||
|
||||
auto* dloss = ctx.Input<Tensor>(framework::GradVarName("Loss"));
|
||||
auto* dpred = ctx.Output<Tensor>(framework::GradVarName("Predicted"));
|
||||
|
||||
auto dl = EigenVector<T>::Flatten(*dloss);
|
||||
auto place = ctx.GetEigenDevice<Place>();
|
||||
|
||||
if (dpred) {
|
||||
dpred->mutable_data<T>(ctx.GetPlace());
|
||||
auto dx = framework::EigenVector<T>::Flatten(*dpred);
|
||||
dx.device(place) = dl * (-(label / (prediction + epsilon)) +
|
||||
((static_cast<T>(1) - label) /
|
||||
(static_cast<T>(1) - prediction + epsilon)));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,33 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestLogLossOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = 'log_loss'
|
||||
samples_num = 32
|
||||
|
||||
predicted = np.random.uniform(0.1, 1.0,
|
||||
(samples_num, 1)).astype("float32")
|
||||
labels = np.random.randint(0, 2, (samples_num, 1)).astype("float32")
|
||||
epsilon = 1e-4
|
||||
self.inputs = {
|
||||
'Predicted': predicted,
|
||||
'Labels': labels,
|
||||
}
|
||||
|
||||
self.attrs = {'epsilon': epsilon}
|
||||
loss = -labels * np.log(predicted + epsilon) - (
|
||||
1 - labels) * np.log(1 - predicted + epsilon)
|
||||
self.outputs = {'Loss': loss}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['Predicted'], 'Loss', max_relative_error=0.03)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue