|
|
|
@ -126,6 +126,7 @@ def init_config_environment(
|
|
|
|
|
g_config=TrainerConfig(),
|
|
|
|
|
g_layer_map={},
|
|
|
|
|
g_parameter_map={},
|
|
|
|
|
g_parameter_initializer_map={},
|
|
|
|
|
g_extended_config_funcs={},
|
|
|
|
|
|
|
|
|
|
# store command args of paddle_trainer
|
|
|
|
@ -439,22 +440,22 @@ def model_type(name):
|
|
|
|
|
|
|
|
|
|
@config_class
|
|
|
|
|
class Bias(Cfg):
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
parameter_name=None,
|
|
|
|
|
learning_rate=None,
|
|
|
|
|
momentum=None,
|
|
|
|
|
decay_rate=None,
|
|
|
|
|
decay_rate_l1=None,
|
|
|
|
|
initial_mean=None,
|
|
|
|
|
initial_std=None,
|
|
|
|
|
initial_strategy=None,
|
|
|
|
|
initial_smart=None,
|
|
|
|
|
num_batches_regularization=None,
|
|
|
|
|
sparse_remote_update=None,
|
|
|
|
|
gradient_clipping_threshold=None,
|
|
|
|
|
is_static=None,
|
|
|
|
|
is_shared=None, ):
|
|
|
|
|
def __init__(self,
|
|
|
|
|
parameter_name=None,
|
|
|
|
|
learning_rate=None,
|
|
|
|
|
momentum=None,
|
|
|
|
|
decay_rate=None,
|
|
|
|
|
decay_rate_l1=None,
|
|
|
|
|
initial_mean=None,
|
|
|
|
|
initial_std=None,
|
|
|
|
|
initial_strategy=None,
|
|
|
|
|
initial_smart=None,
|
|
|
|
|
num_batches_regularization=None,
|
|
|
|
|
sparse_remote_update=None,
|
|
|
|
|
gradient_clipping_threshold=None,
|
|
|
|
|
is_static=None,
|
|
|
|
|
is_shared=None,
|
|
|
|
|
initializer=None):
|
|
|
|
|
self.add_keys(locals())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -465,6 +466,7 @@ class Input(Cfg):
|
|
|
|
|
self,
|
|
|
|
|
input_layer_name,
|
|
|
|
|
parameter_name=None,
|
|
|
|
|
initializer=None,
|
|
|
|
|
learning_rate=None,
|
|
|
|
|
momentum=None,
|
|
|
|
|
decay_rate=None,
|
|
|
|
@ -521,6 +523,7 @@ class Projection(Input):
|
|
|
|
|
initial_std=None,
|
|
|
|
|
initial_strategy=None,
|
|
|
|
|
initial_smart=None,
|
|
|
|
|
initializer=None,
|
|
|
|
|
num_batches_regularization=None,
|
|
|
|
|
sparse_remote_update=None,
|
|
|
|
|
sparse_update=None,
|
|
|
|
@ -1479,7 +1482,8 @@ class LayerBase(object):
|
|
|
|
|
gradient_clipping_threshold=bias.
|
|
|
|
|
gradient_clipping_threshold,
|
|
|
|
|
is_static=bias.is_static,
|
|
|
|
|
is_shared=bias.is_shared, )
|
|
|
|
|
is_shared=bias.is_shared,
|
|
|
|
|
initializer=bias.initializer)
|
|
|
|
|
if for_self:
|
|
|
|
|
self.config.bias_parameter_name = bias.parameter_name
|
|
|
|
|
else:
|
|
|
|
@ -1536,7 +1540,8 @@ class LayerBase(object):
|
|
|
|
|
format=format,
|
|
|
|
|
is_static=input_config.is_static,
|
|
|
|
|
is_shared=input_config.is_shared,
|
|
|
|
|
update_hooks=input_config.update_hooks)
|
|
|
|
|
update_hooks=input_config.update_hooks,
|
|
|
|
|
initializer=input_config.initializer)
|
|
|
|
|
|
|
|
|
|
def set_layer_size(self, size):
|
|
|
|
|
if self.config.size == 0:
|
|
|
|
@ -3221,7 +3226,8 @@ def Parameter(name,
|
|
|
|
|
need_compact=None,
|
|
|
|
|
is_static=None,
|
|
|
|
|
is_shared=None,
|
|
|
|
|
update_hooks=None):
|
|
|
|
|
update_hooks=None,
|
|
|
|
|
initializer=None):
|
|
|
|
|
|
|
|
|
|
config_assert(name not in g_parameter_map,
|
|
|
|
|
'Duplicated parameter name: ' + name)
|
|
|
|
@ -3309,6 +3315,11 @@ def Parameter(name,
|
|
|
|
|
para.update_hooks.extend(update_hooks)
|
|
|
|
|
|
|
|
|
|
g_parameter_map[name] = para
|
|
|
|
|
if initializer is not None:
|
|
|
|
|
config_assert(
|
|
|
|
|
callable(initializer),
|
|
|
|
|
"parameter initializer should be a callable object")
|
|
|
|
|
g_parameter_initializer_map[name] = initializer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@config_func
|
|
|
|
|